

ENSR

10461 Old Placerville Road, Suite 170, Sacramento, California, 95827-2508 T 916.362.7100 F 916.362.8100 www.ensr.aecom.com

August 22, 2006

Mr. Craig Hunt North Coast Water Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 94503-2097

RE: Quarterly Groundwater Monitoring Results/ Remedial System Status Report

Second Quarter 2006 Former Unocal Bulk Plant No. 0813 122 Leslie Street, Ukiah, California RWQCB No. 1NMC405 ENSR Project No. 06940-264-100

Dear Mr. Hunt:

ENSR Corporation (ENSR) has been authorized by Union Oil Company of California (Unocal) to perform quarterly groundwater monitoring and to operate and maintain the groundwater remediation system at the site located at 122 Leslie Street, Ukiah, California (**Figure 1**). The site is a former bulk plant with a chain link fence around its perimeter. The locations of former and current site features are illustrated on **Figure 2**. Quarterly groundwater monitoring is intended to evaluate the distribution of petroleum hydrocarbon constituents in groundwater beneath the site. This report summarizes results of the samples collected from the site and the operational status of the groundwater remediation system during the second quarter 2006. A section has been added to this report summarizing the status of the ozone sparging system that began operation in April 2005. The field work was performed in accordance with the field methods and procedures included in **Attachment A**.

Background

Two groundwater monitoring wells (MW-7 and MW-12) were installed as part of a soil and groundwater investigation associated with the former D.Z., Inc. Bulk Plant located adjacent to the former Unocal site's southern property boundary at 134 Leslie Street. In 1999, a soil and groundwater investigation was conducted at 122 Leslie included advancement of on-site soil borings B-1 through B-7. A supplemental evaluation of soil and groundwater following that investigation included the advancement of on-site soil boring B-8 and the installation of on-site groundwater monitoring wells MW-1 and MW-2. A further supplemental evaluation of soil and groundwater beneath and in the vicinity of the Unocal site was conducted in 2002 that included drilling eight soil borings and installing groundwater monitoring wells MW-3 through MW-6 and MW-8. A door-to-door sensitive receptor survey within a 500-foot radius of the site and an underground utility search within the vicinity of the site were also conducted in 2002.

In a letter dated November 20, 2003, the Regional Water Quality Control Board, North Coast Region (RWQCB) approved a Corrective Action Plan prepared by Environmental Resolutions, Inc. (ERI) of Petaluma, California dated June 18, 2003. In late July 2003, ERI installed the nine C-Sparge/SVE wells associated with the remediation system at the site. On May 20, 2004, the RWQCB verbally approved a remedial design plan (RDP) dated February 3, 2004 prepared by ERI and reviewed by ENSR. The approved remedial options were ozone microsparging (C-Sparge™) and soil vapor extraction (SVE). Upon review of the completion depths of the C-Sparge/SVE wells, it was ENSR's opinion that the C-Sparge wells were set too deep to effectively remediate the groundwater beneath the site.

In a telephone conversation with the RWQCB on October 14, 2004, ENSR proposed collecting groundwater samples from selected on-site C-Sparge wells for chemical analysis to determine if the groundwater has been impacted at the screened interval depths [approximately 32 to 35 feet below ground surface (bgs)] of the C-Sparge wells. Based on the analytical results, ENSR submitted a *Revised*

Remedial Design Plan dated December 7, 2004. ENSR received a verbal approval from the RWQCB in mid-December 2004 and began implementation of the revised RDP in early January 2005.

On January 12 and 13, 2005, Woodward Drilling Company of Rio Vista, California (C-57 License #710079) advanced soil borings AS-10 through AS-18 under the oversight of an ENSR geologist. Each boring was advanced using a truck-mounted drill rig each to an approximate depth of 20 feet bgs using 8.25-inch diameter hollow stem augers. The soil borings were completed as air sparge wells AS-10 through AS-18.

A construction subcontractor (W.A. Craig, Inc. of Dixon, California) installed the ozone sparging system at the site in March and April 2005 under ENSR supervision. System operation began on April 18, 2005.

Groundwater Level Measurements

Depth to groundwater levels were measured in monitoring wells MW-1 through MW-9 on May 17, 2006 and are presented in **Table 1.** The ozone sparging system was not operating during collection of depth to groundwater measurements in order to allow groundwater levels to stabilize. Groundwater elevations were calculated and used to construct a groundwater elevation contour map included as **Figure 3**.

On May 17, 2006, the groundwater flow direction just east of the site was generally south-southeast with an average hydraulic gradient of approximately 0.007 feet per foot (ft/ft). On-site, the groundwater flow direction was generally to the east with an average hydraulic gradient of approximately 0.014 ft/ft. These directions and gradients are consistent with those historically observed at the site. Copies of the groundwater sampling information sheets are included in **Attachment B**. A summary of groundwater elevation data determined to date is presented in **Table 1**.

Groundwater Sampling and Analytical Results

Groundwater samples were collected from monitoring wells MW-1 through MW-9 on May 17, 2006. Groundwater samples were submitted to California Laboratory Services in Rancho Cordova, California (a state-certified laboratory) under chain-of-custody (COC) protocols. Samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8021B, total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015M, total petroleum hydrocarbons as diesel (TPHd) by EPA Method 8015M, and total lead by EPA Method 6010B. Total recoverable petroleum hydrocarbons (TRPH) also referred to as Hexane Extractable Material with Silica Gel Treatment (SGT-HEM) by EPA Method 1664 was inadvertently analyzed on all samples during the second quarter 2006 event. Additionally, the samples taken from MW-1 and MW-2 were analyzed for bromate by EPA Method 300.1, bromide by EPA Method 300, hexavalent chromium by EPA Method 7199, molybdenum and vanadium by EPA Method 200.7, selenium by EPA Method 200.8, and pH by EPA Method 150.1. In order to achieve the detection limit desired for bromate (<5 μ g/L), CLS subcontracted the bromate analysis to BSK Analytical Laboratories in Fresno, California. These analytes were added to the sampling regimen to monitor for the formation of dissolved phase metals resulting from the oxidation reaction created by the ozone application.

TPHd was detected in monitoring wells MW-1, MW-2, and MW-3 with a maximum concentration of 490 micrograms per liter (μ g/L) in MW-1. TPHg was detected in monitoring well MW-1 at a concentration of 580 μ g/L. Benzene concentrations were not detected above the laboratory reporting limit of 0.50 μ g/L in any of the monitoring wells sampled during the second quarter 2006 event.

Cumulative groundwater sampling results are summarized in **Table 1**. A map depicting dissolved concentrations of TPHg, TPHd, and benzene in groundwater for the second quarter 2006 is included as **Figure 4**. Isoconcentration contour maps for TPHd and TPHg in groundwater for the second quarter 2006 sampling event are included as **Figure 5** and **Figure 6**, respectively. A copy of the certified laboratory analytical report with chain-of-custody documentation is included in **Attachment C**.

Ozone Sparging System Description

The Advanced Oxidation Process/Biostimulation (AOP/B) system is primarily an ozone sparging system with capabilities for enhanced chemical oxidation and biostimulation through the addition of supplemental oxidizing agents and/or nutrients.

The AOP/B system delivers ozonated air from inside a modified freight container (remediation enclosure), to the subsurface via sparge tubing and PVC piping. The ozonated air is delivered through micro-porous sparge points installed in the bottom of sparge wells. The depth of the sparge wells is several feet below the water table. Ozonated air is typically delivered at flows of approximately one to five standard cubic feet per minute (SCFM) and at pressures from 7 to 25 pounds per square inch (PSI), depending on subsurface conditions. Ozone concentrations in the process flow stream typically range from 1,500 parts per million by volume (ppmv) to 10,000 ppmv.

The AOP/B system is operated using a programmable-logic-controller (PLC) automated system capable of operating individual sparge points or several sparge points in any desired sequence. The system is equipped with an ozone sensor that transmits a signal to the PLC which is programmed to shut the system down in the event of an ozone leak within the remediation enclosure. The remediation enclosure is air conditioned and thermally insulated to maintain a constant temperature and thereby protect the electronic components. The thermal insulation also serves as a sound barrier to reduce noise levels outside of the remediation enclosure created by operation of the air compressor, air conditioner, and cooling fans.

Ozone Sparging System Operation

The system currently cycles between sparge points on a 37-minute sequence per cycle. Sparging sequences begin with five minutes of air flow, followed by 30 minutes of air/ozone flow, then followed by two minutes of air flow (to purge the conveyance piping and tubing). The PLC program executes 12 air-ozone-air cycles with three 15-minute rest cycles in between every third sparge cycle. The program repeats after application to each sparge point.

Modifications have been made to the PLC program to reduce the ozone loading near MW-2 in order to minimize the occurrence of undesirable byproducts such as bromate and hexavalant chromium.

Sparging is performed sequentially between sparge points to minimize the local impact on the hydraulic gradient and to prevent further mobilization of the contaminant plume. The ozone application time interval relates to the approximate time it takes for a consistent flow pattern to develop and to achieve an optimum radius of influence. The system shuts down after the entire sequence to allow the equipment to cool.

Ozone Sparging System Performance

During an operation and maintenance visit to the site on April 5, 2006, the air compressor for the ozone sparge system was found inoperable. The compressor was removed and an identical replacement compressor was ordered on April 12, 2006 with a tentative delivery date of May 5, 2006. Due to a manufacturing recall, the manufacturer was unable to deliver the unit or give a new tentative delivery date. The order was cancelled on May 19, 2006 and a similar compressor produced by another manufacturer was ordered on May 19, 2006. The replacement compressor was delivered on June 9, 2006 and installed on June 14, 2006. The sparge system has been in operation since the installation of the compressor through the end of the quarter.

ENSR is documenting the AOP/B system performance with monthly monitoring and analytical analysis of three-casing-volume purged samples from MW-1 and MW-2 when the system is in operation. Monthly

samples have been collected at MW-1 and MW-2 since the system startup in April 2005. These groundwater samples are being analyzed for TPHg, TPHd, and BTEX compounds. Additional analyses are also performed to ascertain the possible presence of dissolved metals. Results for samples collected at MW-1 and MW-2 as part of the remedial status evaluation are provided in **Table 2**.

Graphs depicting TPHg and TPHd concentrations over time for MW-1 and MW-2 are included as **Figures 7** and **8**, respectively.

Conclusions/Recommendations

- TPHd was detected in monitoring wells MW-1, MW-2, and MW-3 with a maximum concentration of 490 μg/L in MW-1, significantly lower than in the first quarter of 2006. TPHd was detected in the same three monitoring wells in the previous quarter with a maximum concentration of 13,000 μg/L in MW-1.
- TPHg was detected in monitoring wells MW-1 and MW-2 with a maximum concentration of 580 μg/L in MW-1. TPHg was detected in three monitoring wells (MW-1, MW-2, and MW-3) in the previous quarter with a maximum concentration of 1,400 μg/L in MW-1.
- Benzene concentrations were not detected above the laboratory reporting limits in any monitoring wells sampled during the second quarter 2006 event. The most recent benzene detection occurred in the fourth quarter of 2005 in MW-1 at a concentration of 0.41µg/L.

Since quarterly groundwater monitoring and sampling has been conducted at the site since August 2002, it is ENSR's opinion that sufficient quarterly data exist to establish seasonal fluctuations and trends for BTEX, TPHd, TPHg and total lead concentrations in groundwater. ENSR recommends that reducing the sampling frequency in monitoring wells MW-3 through MW-9 from quarterly to semiannually during the first and third quarters. Groundwater elevations will continue to be monitored quarterly in the wells. If the proposed reduction in sampling frequency is accepted, ENSR also proposes reducing the reporting frequency from quarterly to semiannually.

ENSR will continue monthly groundwater monitoring in MW-1 and MW-2 to assess performance of the AOP/B system. ENSR personnel met with the North Coast Water Board in January 2006 to assess the AOP/B system performance and discuss the path toward regulatory site closure. It was determined that ENSR will continue to operate the AOP/B system until groundwater contamination levels approach Regional Water Quality Control Board water quality objectives.

Future Work

The next quarterly groundwater monitoring and sampling event is scheduled for August 2006. ENSR will also be monitoring performance of the AOP/B system with monthly sampling of MW-1 and MW-2. The next quarterly groundwater monitoring/remediation system status report would be due by October 31, 2006; however, if ENSR's proposal for semiannual sampling and reporting is accepted, the semiannual groundwater monitoring/ remediation system status report for the third and fourth quarters 2006 would be due by January 31, 2007.

Remarks/Signatures

The interpretations in this report represent our professional opinions and are based, in part, on information supplied by the client. These opinions are based on currently available information and are arrived at in accordance with currently accepted hydrogeologic and engineering practices at this time and location. Other than this, no warranty is implied or intended. If you have any questions regarding this project, please contact Mr. Mike Berrington at (916):362-7100.

Sincerely,

ENSR Corporation

John M. Warren, R.C.E. No. 34168

Senior Project Engineer

Mike Fischer, E.I.T. Project Engineer

Michael A. Berrington, P.G. No. 7124

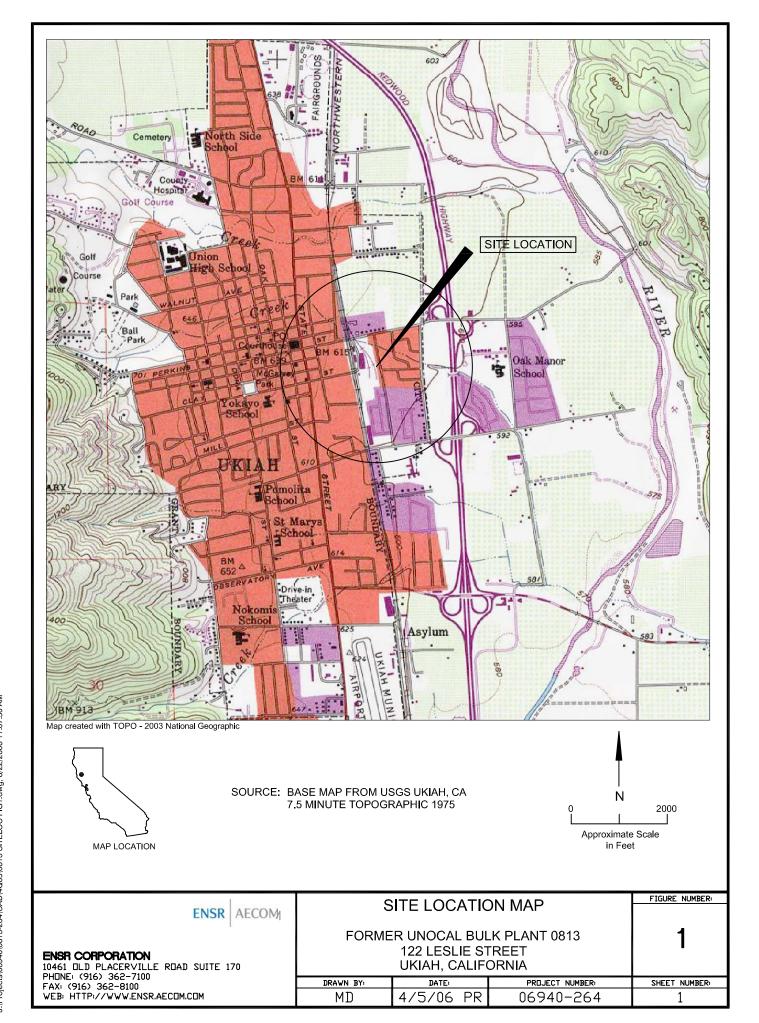
Senior Project Manager

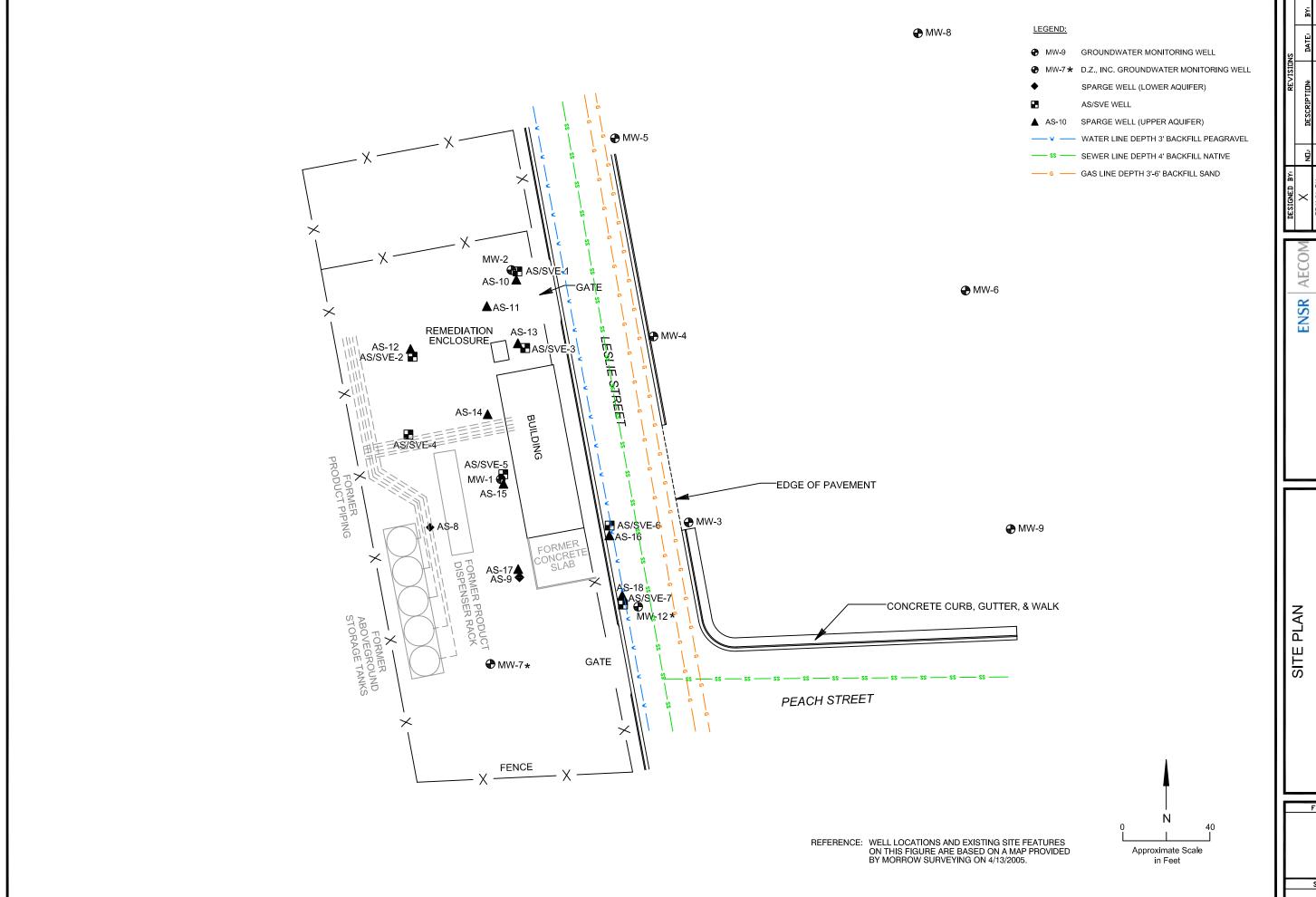
MF/dk

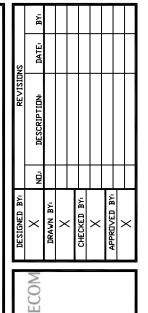
cc: Mr. John Frary, Union Oil Company of California

Attachments

Figures

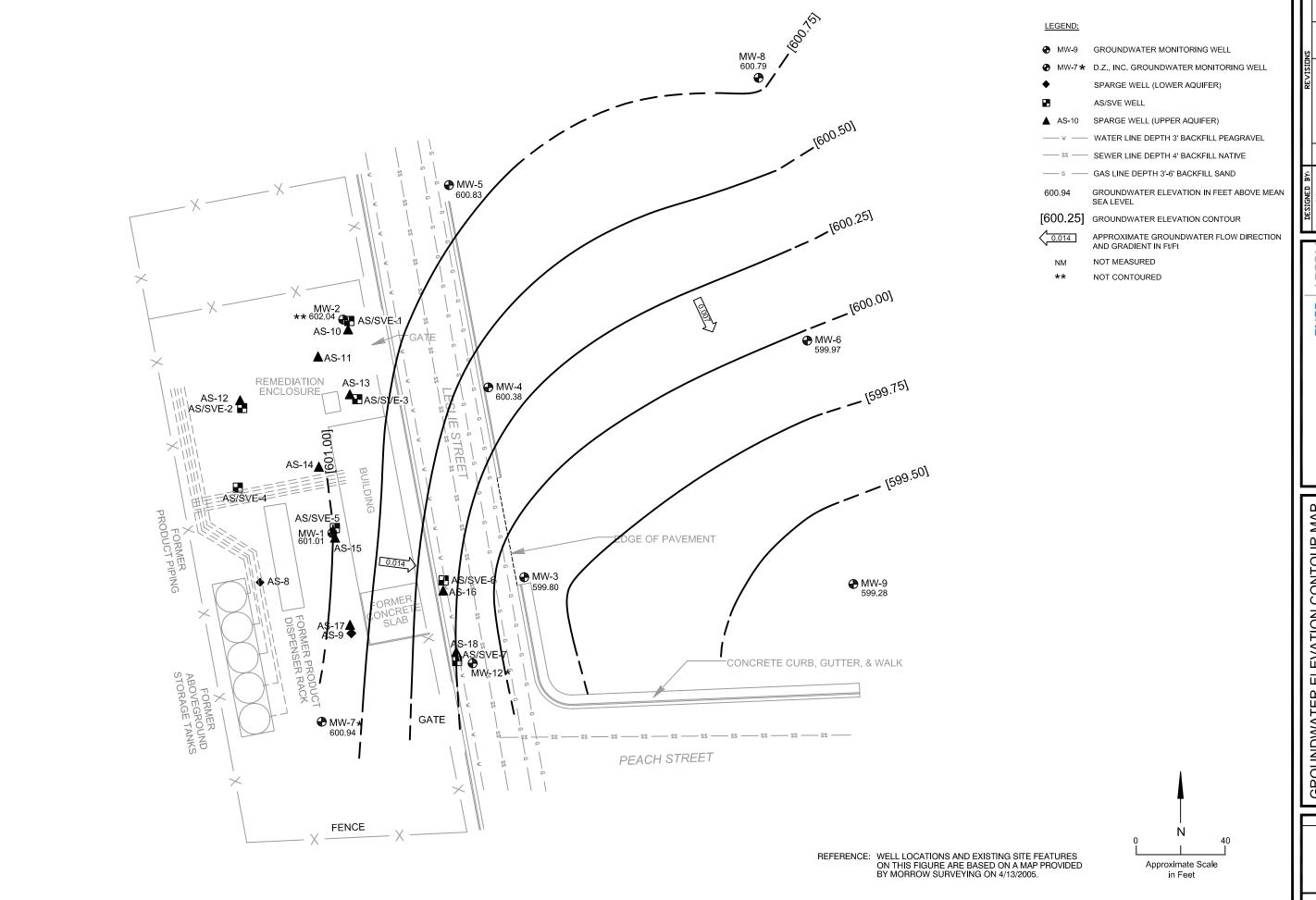

- 1 Site Location Map
- 2 Site Plan
- 3 Groundwater Elevation Contour Map, May 17, 2006
- 4 Petroleum Hydrocarbon Concentration Map, May 17, 2006
- 5 TPHd Isoconcentration Map, May 17, 2006
- 6 TPHg Isoconcentration Map, May 17, 2006
- 7 TPHg and TPHd Concentration in MW-1
- 8 TPHg and TPHd Concentration in MW-2


Tables


- 1 Groundwater Monitoring Data and Analytical Results
- 2 Ozone Sparging System Monitoring

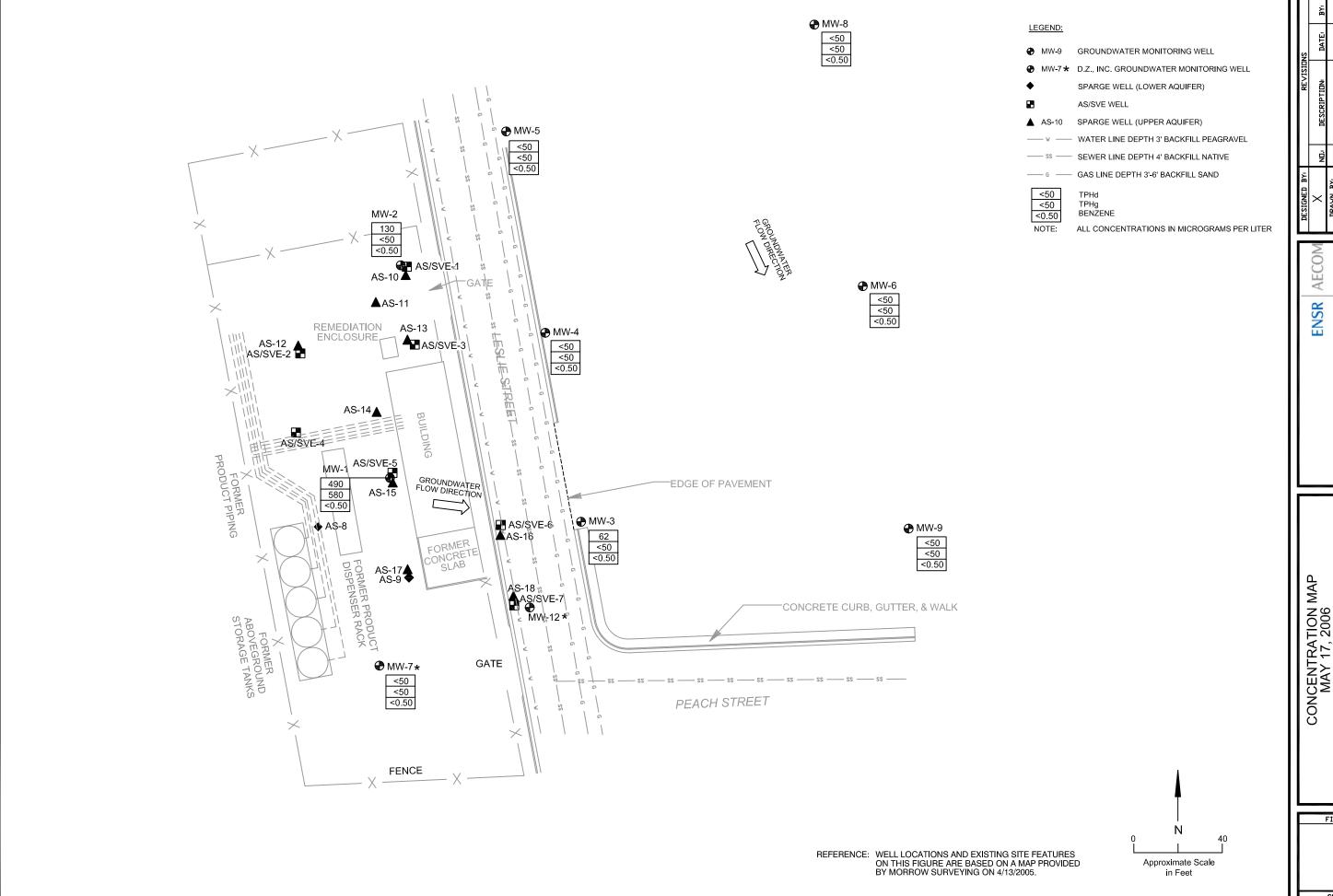
Attachments

- A Field Methods and Procedures
- B Groundwater Sampling Information Sheets
- C Laboratory Analytical Results With Chain-Of-Custody Documentation



•	QUARTERLY MONITORING REPORT 2nd QUARTER 2006 FORMER UNOCAL BULK PLANT 0813	REET IRNIA	PROJECT NUMBER	49 <i>2</i> -04690
	RLY MONITORING REPORT 2nd QUAR FORMER UNOCAL BULK PLANT 0813	122 LESLIE STREET UKIAH, CALIFORNIA	DATE	= 40' 6/7/06 PR
	QUARTERLY N FOR		SCALE	" = 40'

FIGURE NUMBER:
2
SHEET NUMBER:
1



ROAD SUITE QUARTERLY MONITORING REPORT 2nd QUARTER 2006 FORMER UNOCAL BULK PLANT 0813 122 LESLIE STREET

ENSR | AECON

GROUNDWATER ELEVATION CONTOUR MAP MAY 17, 2006

FIGURE NUMBER: 3 SHEET NUMBER:

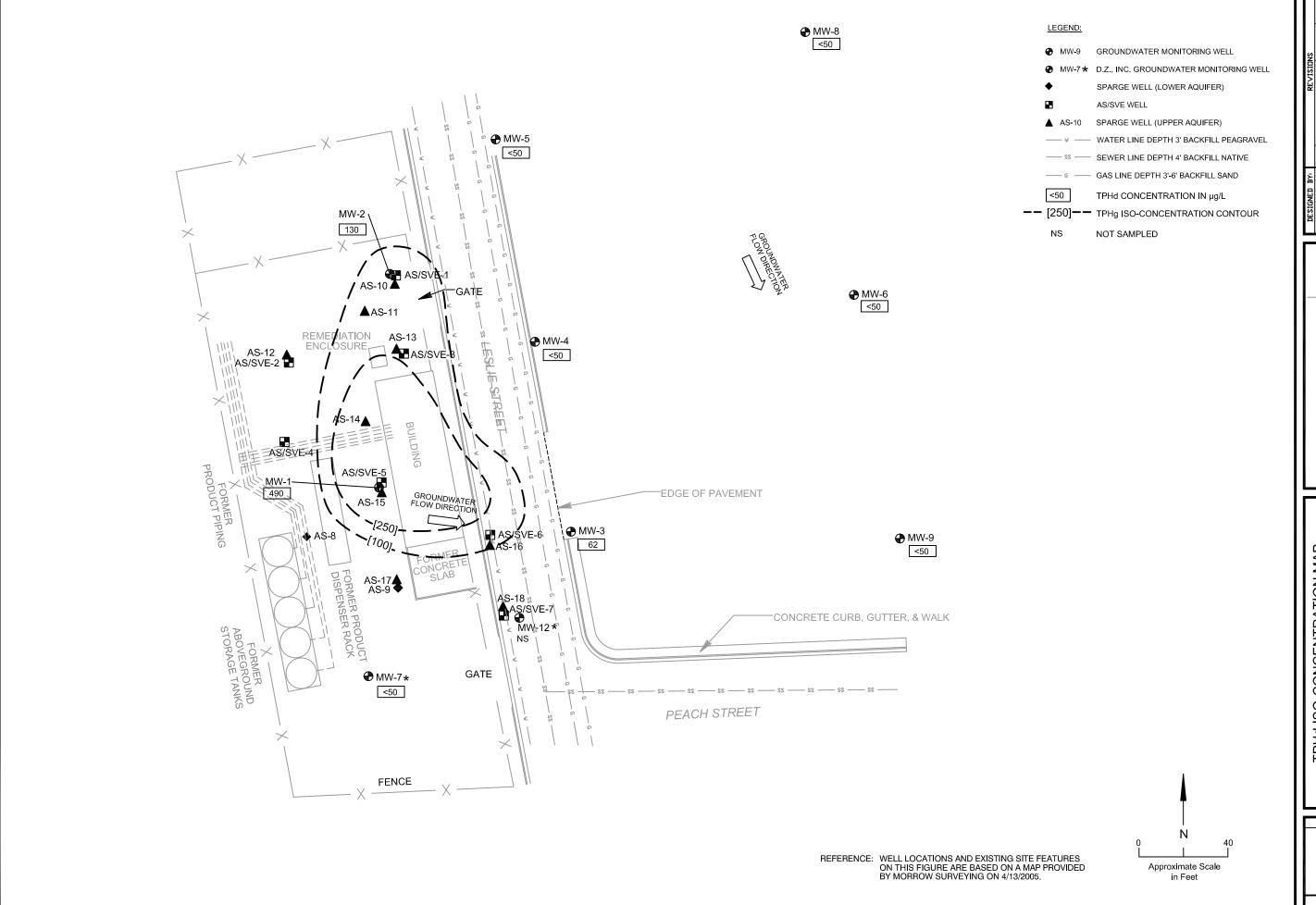
ENSK AN ENS CORPORATION
10461 GLD PLACERVILLE RGAD SUITE 170 PHONE, (916) 362–3100
FAX: (916) 362–8100
WEB: HTTP://www.ensr.aecom.com

d QUARTER 2006

NT 0813

ENGR COPI

10461 DLD P

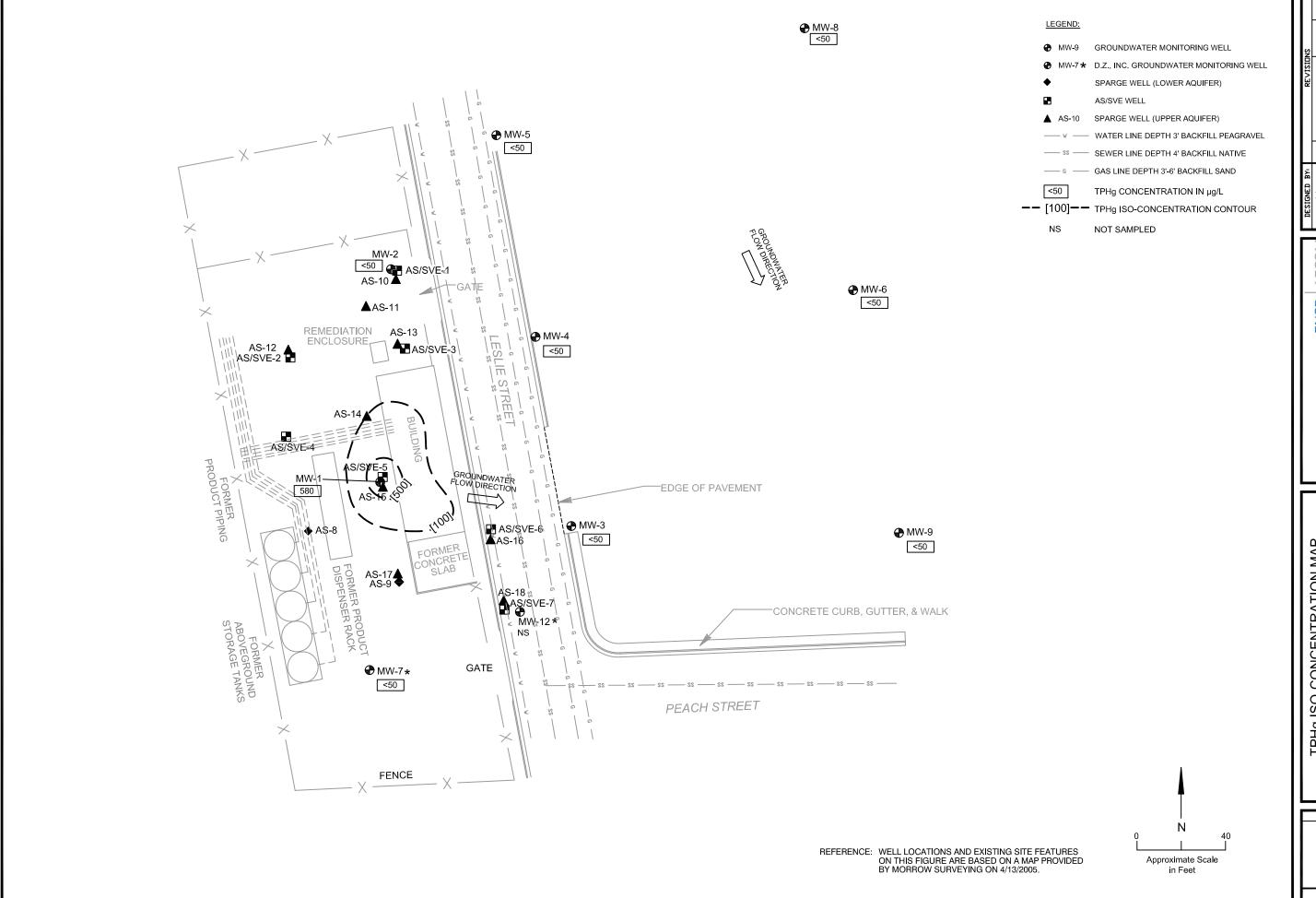

PHIDNE: (916, 3

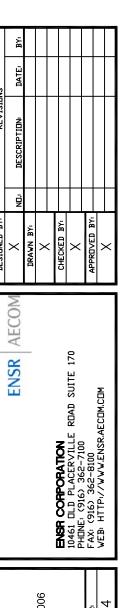
FAX: (916) 3

ARTERLY MONITORING REPORT 2nd QUART FORMER UNOCAL BULK PLANT 0813 122 LESLIE STREET UKIAH, CALIFORNIA STALE:

FIGURE NUMBER:

SHEET NUMBER:




ENSR | AECON E ROAD SUITE QUARTERLY MONITORING REPORT 2nd QUARTER 2006 FORMER UNOCAL BULK PLANT 0813 122 LESLIE STREET TPHd ISO-CONCENTRATION MAP MAY 17, 2006 FIGURE NUMBER:

5

SHEET NUMBER:

1.\Projects\06940\0813.264\CAD\2c\06\0813 TPHD fig5 dwg 9/7/2006 3:

TPHG ISO-CONCENTRATION MAP
MAY 17, 2006
QUARTERLY MONITORING REPORT 2nd QUARTER 2006
FORMER UNOCAL BULK PLANT 0813
122 LESLIE STREET
UKIAH, CALIFORNIA
SCALE: DATE: PROJECT NUMBER:

FIGURE NUMBER:

6

SHEET NUMBER:
1

Figure 7
TPHd and TPHg Concentrations in MW-1

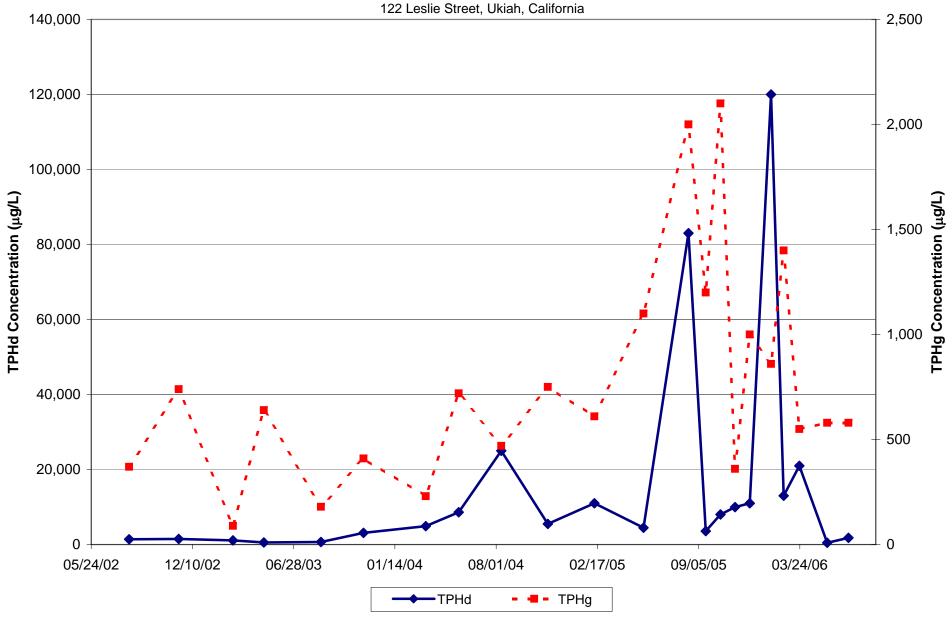


Figure 8
TPHd and TPHg Concentrations in MW-2

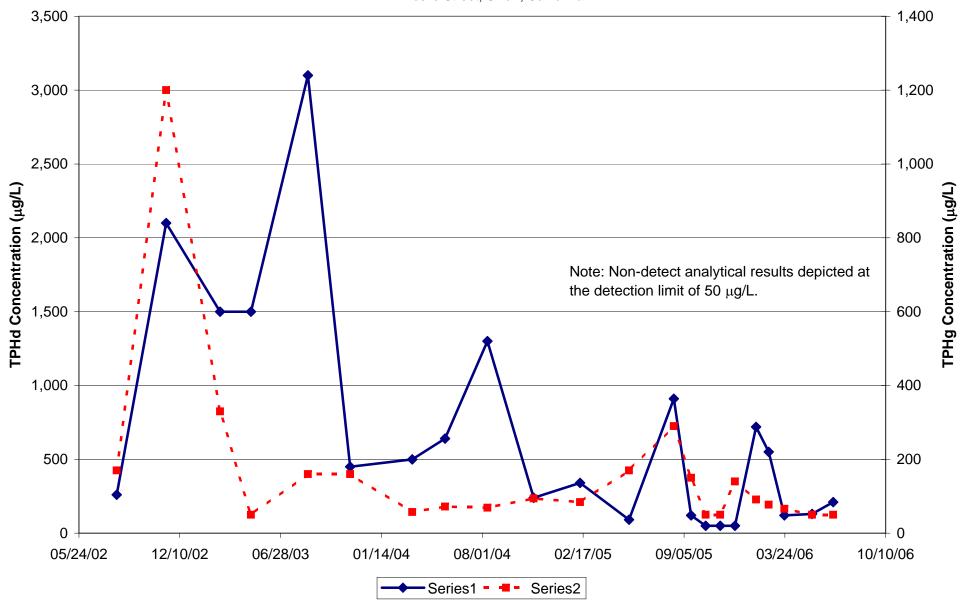


Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	T	Е	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
					_						
MW-1	08/07/02 ¹	16.11	591.82	1,400	370 ²	< 0.50	<0.50	1.3	< 0.50	<75	<5,000
607.93	11/13/02	17.35	590.58	1,500	740	< 0.50	< 0.50	6.7	< 0.50	<75	<5,000
	02/28/03	7.26	600.67	1,100	89	< 0.50	< 0.50	<0.50	< 0.50	<75	<5,000
	04/30/03	4.29	603.64	570	640	<0.50	< 0.50	1.8	< 0.50	<75	<5,000
	08/21/03	13.93	594.00	690	180	1.5	< 0.50	0.87	2.1	<50	<5,000
	11/13/03	20.25	587.68	3,100	410	<0.50	< 0.50	0.64	< 0.50	<75	<5,000
	03/15/04	6.65	601.28	4,900	230 ⁴	< 0.50	< 0.50	< 0.50	2.0	7.6	<5,000
	05/19/04	10.50	597.43	8,600	720	< 0.50	< 0.50	3.8	3.7	9.0	5,000
	08/11/04	16.81	591.12	25,000	470 ⁴	1.4	<1.0 ⁶	2.2	4.5	15	<5,000
	11/11/04	17.73	590.20	5,500	750 ⁴	1.3	4.1	11	6.4	6.8	<5,000
	02/11/05	7.67	600.26	11,000	610 ⁴	< 0.50	0.62	2.5	3.4	<5.0	<5,000
	05/19/05	6.04	602.58	4,500	1,100	<1.5	<1.5	<2.5	<2.5	5.4	NA
608.62	08/16/05	11.80	596.82	83,000	2,000	0.39	< 0.30	< 0.50	< 0.50	22	5,200
	11/16/05	17.30	591.32	10,000	360	0.41	< 0.30	< 0.50	< 0.50	12	NA
	02/20/06	7.24	601.38	13,000	1,400 ⁴	< 0.50	4.4	7.6	5.6	<50	NA
Duplicate	05/17/06				270	<0.50	<0.50	2.0	1.4		
	05/17/06	7.61	601.01	490 ⁵	580 ⁴	<0.50	<0.50	6.2	4.4	<50	<5,000
BANA/ O	08/07/02 ¹	47.05	500.40	000	170 ²	0.50	0.50	0.04	0.50	75	F 000
MW-2		17.35	590.43	260		<0.50	<0.50	0.91	<0.50	<75	<5,000
607.78	11/13/02	20.23	587.55	2,100	1,200	<1.0	<1.0	19	<1.0	<75	<5,000
	02/28/03	7.55	600.23	1,500	330	<0.50	<0.50	2.4	0.57	<75	<5,000
	04/30/03	4.87	602.91	1,500	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,100
	08/21/03	14.54	593.24	3,100 ²	160	<0.50	0.60	1.1	4.0	<50	<5,000
	11/13/03	21.04	586.74	450	160	<0.50	<0.50	0.67	<0.50	<75	<5,000
	03/15/04	7.13	600.65	500	57 ⁴	<0.50	<0.50	<0.50	<1.0	8.4	<5,000
	05/19/04	10.77	597.01	640	72	< 0.50	<0.50	1.7	2.9	6.9	<5,000
	08/11/04	18.00	589.78	1,300	69 ⁴	<0.50	<0.50	0.88	2.0	12	<5,000
	11/11/04	20.08	587.70	240	94 4	<0.50	0.99	2.0	2.5	<5.0	<5,000
	02/11/05	7.37	600.41	340	84 ⁴	< 0.50	0.87	1.5	<1.0	<5.0	<5,000
	05/19/05	7.73	600.83	91	170	< 0.30	< 0.30	< 0.50	<0.50	2.2	NA
608.56	08/16/05	10.55	598.01	910 ⁷	290	< 0.30	< 0.30	< 0.50	<0.50	56	<5,000

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	Т	E	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
MW-2	11/16/05	18.95	589.61	<50	<50	< 0.30	<0.30	<0.50	< 0.50	170	NA
(Cont.)	02/20/06	8.11	600.45	550	77	< 0.50	< 0.50	2.0	1.0	<50	NA
	05/17/06	6.52	602.04	130 ⁵	<50	<0.50	<0.50	0.70	<1.0	<50	<5,000
MW-3	08/07/02 ¹	17.29	589.85	28,000	1,300 ²	<0.50	<0.50	7.8	<0.50	360	5,300
607.14	11/13/02	20.73	586.41	9,100	570	<5.0	<5.0	<5.0	<5.0	<75	5,400
	02/28/03	7.78	599.36	220	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,000
	04/30/03	5.04	602.10	420	56	<0.50	<0.50	1.0	< 0.50	<75	<5,000
	08/21/03	14.45	592.69	460	71	1.6	<0.50	<0.50	1.1	<50	<5,000
	11/13/03	21.45	585.69	1,300	260	2.4	<0.50	<0.50	< 0.50	<75	<5,000
	03/15/04	7.38	599.76	360	87	0.71	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/04	10.90	596.24	430	110	< 0.50	0.74	0.99	<1.0	<5.0	<5,000
	08/11/04	17.88	589.26	1,200	140 ⁴	< 0.50	0.56	1.3	2.4	<5.0	<5,000
	11/11/04	20.30	586.84	1,900	310 4	0.77	1.1	5.6	4.5	<5.0	<5,000
	02/11/05	7.64	599.50	230	<50	< 0.50	0.59	0.82	<1.0	<5.0	<5,000
	05/19/05	6.31	601.57	<50	270	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	NA
607.88	08/16/05	12.13	595.75	370 ⁸	470	< 0.30	< 0.30	< 0.50	< 0.50	2.4	<5,000
	11/16/05	18.88	589.00	82	130	< 0.30	< 0.30	< 0.50	< 0.50	2.1	NA
	02/20/06	7.80	600.08	390	53	< 0.50	< 0.50	< 0.50	<1.0	<50	NA
	05/17/06	8.08	599.80	62 ⁵	<50	<0.50	<0.50	<0.50	<1.0	<50	<5,000
	00/07/001	17.10	500.40	00		0.50	0.50	0.50	0.50	540	5 000
MW-4	08/07/02 ¹	17.16	590.13	69	<50	< 0.50	<0.50	<0.50	<0.50	540	<5,000
607.29	11/13/02	20.35	586.94	130	<50	<0.50	<0.50	<0.50	<0.50	<75 	<5,000
	02/28/03	7.49	599.80	240	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,000
	04/30/03	4.82	602.47	240	<50	< 0.50	< 0.50	<0.50	<0.50	<75	<5,100
	08/21/03	14.54	592.75	120 ²	<50	<0.50	<0.50	<0.50	<0.50	<50	<5,000
	11/13/03	21.25	586.04	NS	NS	NS	NS	NS	NS	NS	NS
	03/15/04	7.02	600.27	<50	<50	< 0.50	<0.50	<0.50	<1.0	<5.0	<5,000

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	Т	Е	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
MW-4	05/19/04	10.60	596.69	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
(Cont.)	08/11/04	17.77	589.52	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	11/11/04	20.00	587.29	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	02/11/05	7.28	600.01	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/05	6.26	601.81	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	NA
608.07	08/16/05	11.88	596.19	210 ⁸	<50	< 0.30	< 0.30	< 0.50	< 0.50	3.0	<5,000
	11/16/05	18.88	589.19	120 ¹⁰	<50	< 0.30	< 0.30	< 0.50	< 0.50	18	NA
	02/20/06	7.34	600.73	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<50	NA
	05/17/06	7.69	600.38	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	<5,000
NAVA/ E	08/07/02 ¹	47.00	F00 24	4.400	210 ²	-0.50	-0.50	-0.50	-0.F0	240	-F 000
MW-5		17.33	590.31	4,100		<0.50	<0.50	<0.50	< 0.50	310	<5,000
607.64	11/13/02	20.38	587.26	1,100	74	<0.50	<0.50	<0.50	< 0.50	<75	<5,000
	02/28/03	7.39	600.25	6,300	<50	<0.50	<0.50	<0.50	<0.50	<75	11,000
	04/30/03	4.81	602.83	3,700	<50	<0.50	< 0.50	<0.50	<0.50	<75	6,600
	08/21/03	14.44	593.20	880 ²	<50	<0.50	< 0.50	<0.50	<0.50	<50	<5,000
	11/13/03	21.15	586.49	30,000	61	< 0.50	< 0.50	<0.50	<0.50	130	7,300
	03/15/04	6.92	600.72	1,600 ⁵	<50	<0.50	<0.50	<0.50	<1.0	<5.0	<5,000
	05/19/04	10.58	597.06	<50	<50	<0.50	<0.50	0.53	1.0	<5.0	17,000
	08/11/04	17.92	589.72	8,800 ⁵	<50	<0.50	<0.50	<0.50	<1.0	<5.0	<5,000
	11/11/04	20.02	587.62	4,800 ⁵	<50	< 0.50	<0.50	<0.50	<1.0	<5.0	<5,000
	02/11/05	7.15	600.49	<50	<50	<0.50	<0.50	< 0.50	<1.0	5.3	<5,000
000.40	05/19/05	6.16	602.24	<50	<50	<0.30	<0.30	<0.50	<0.50	<2.0	NA
608.40	08/16/05	11.90	596.50	170 ⁸	<50	<0.30	<0.30	<0.50	<0.50	3.0	5,000
	11/16/05	18.90	589.50	<50	<50	<0.30	<0.30	<0.50	<0.50	<2.0	NA
	02/20/06	7.24	601.16	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	NA
	05/17/06	7.57	600.83	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	<5,000
MW-6	08/07/02 ¹	16.75	589.85	<50 ³	<50	<0.50	<0.50	<0.50	<0.50	260	<5,000
606.60	11/13/02	20.57	586.03	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	Т	E	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
MW-6	02/28/03	7.10	599.50	<50	<50	<0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
(Cont.)	04/30/03	4.70	601.90	72	<50	<0.50	< 0.50	<0.50	< 0.50	<75	<5,200
	08/21/03	13.88	592.72	<50	<50	<0.50	< 0.50	<0.50	< 0.50	<50	<5,000
	11/13/03	21.00	585.60	230	<50	<0.50	< 0.50	<0.50	< 0.50	190	<5,000
	03/15/04	6.66	599.94	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/04	10.15	596.45	<50	<50	<0.50	0.56	0.73	2.0	<5.0	<5,000
	08/11/04	17.32	589.28	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	11/11/04	19.72	586.88	<50	<50	<0.50	< 0.50	< 0.50	<1.0	8.3	<5,000
	02/11/05	6.94	599.66	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/05	5.93	601.43	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	13	NA
607.36	08/16/05	11.45	595.91	<120 ⁹	<50	< 0.30	< 0.30	< 0.50	< 0.50	8.8	<5,000
	11/16/05	18.64	588.72	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	7.4	NA
	02/20/06	7.11	600.25	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<50	NA
	05/17/06	7.39	599.97	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	<5,000
MW-7	08/07/02 ¹	15.50	591.79	56	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,000
607.29	11/13/02	16.58	590.71	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	02/28/03	6.93	600.36	66	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	04/30/03	3.77	603.52	64	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,200
	08/21/03	13.39	593.90	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<50	<5,000
	11/13/03	19.60	587.69	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	03/15/04	6.36	600.93	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/04	10.10	597.19	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	08/11/04	16.18	591.11	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	11/11/04	17.05	590.24	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	02/11/05	6.72	600.57	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/05	5.54	602.53	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	NA
608.07	08/16/05	11.30	596.77	420 ⁸	<50	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	<5,000
	11/16/05	16.70	591.37	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	NA

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	Т	Е	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
MW-7	02/20/06	6.96	601.11	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	NA
(Cont.)	05/17/06	7.13	600.94	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	<5,000
MW-8	08/07/02 ¹	16.30	590.23	<50 ³	<50	<0.50	<0.50	<0.50	<0.50	190	4F 000
606.53	11/13/02	20.15	586.38	<50 <50	<50 <50	<0.50	<0.50	<0.50	< 0.50	<75	<5,000 <5,000
000.55	02/28/03	6.18	600.35	<50	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,000 <5,000
	04/30/03	3.98	602.55	59	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,000
	08/21/03	13.33	593.20	< 5 0	<50	<0.50	0.56	<0.50	<0.50	<50	<5,000
	11/13/03	20.60	585.93	140	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,000
	03/15/04	5.72	600.81	<50	<50	<0.50	<0.50	<0.50	<0.50	<5.0	<5,000
	05/19/04	9.40	597.13	<50	<50	< 0.50	< 0.50	0.66	1.9	<5.0	<5,000
	08/11/04	16.85	589.68	<50	<50	<0.50	<0.50	<0.50	<1.0	<5.0	<5,000
	11/11/04	19.07	587.46	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	02/11/05	6.03	600.50	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/05	5.04	602.26	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	4.9	NA
607.30	08/16/05	10.73	596.57	140 ⁸	<50	< 0.30	< 0.30	< 0.50	< 0.50	7.6	<5,000
	11/16/05	17.90	589.40	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	11	NA
	02/20/06	6.18	601.12	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<50	NA
	05/17/06	6.51	600.79	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	<5,000
MW-9	08/21/03 ¹	14.25	592.42	<50	<50	<0.50	<0.50	<0.50	<0.50	<50	<5,000
606.67	11/13/03	21.45	585.22	55	<50	<0.50	<0.50	<0.50	<0.50	79	<5,000
000.07	03/15/04	7.50	599.17	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	<5,000
	05/19/04	10.78	595.89	<50	<50	0.94	0.77	0.95	3.2	<5.0	<5,000
	08/11/04	17.67	589.00	<50	<50	<0.50	<0.50	<0.50	<1.0	<5.0	<5,000
	11/11/04	20.23	586.44	<50	<50	<0.50	<0.50	<0.50	<1.0	<5.0	<5,000
	02/11/05	7.77	598.90	<50	<50	<0.50	<0.50	<0.50	<0.50	<5.0	<5,000
	05/19/05	6.65	600.79	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	7.4	
607.44	08/16/05	12.00	595.44	480 ⁸	<50	< 0.30	< 0.30	< 0.50	< 0.50	9.8	<5,000
	11/16/05	18.82	588.62	<50	<50	< 0.30	< 0.30	< 0.50	<0.50	11	NA
	11/10/03	10.02	300.02	<50	<50	<0.30	<0.30	<0.50	<0.50	11	

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC*(ft.)	DATE	DTW (ft.)	GWE (msl)	TPHd (μg/L)	TPHg $(\mu g/L)$	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	Total Lead $(\mu g/L)$	ΤΟ G (μg/L)
MW-9	02/20/06	7.92	599.52	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	NA
(Cont.)	05/17/06	8.16	599.28	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	<5,000
MW-12 607.33	NOT MONIT	ORED/NOT	SAMPLED								
Trip Blank	08/07/02			NA	<50	<0.50	<0.50	<0.50	<0.50	NA	NA
QA	11/13/02			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	02/28/03			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	04/30/03			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	08/21/03			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	11/13/03			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	05/19/04			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	08/11/04			NA	<50	< 0.50	< 0.50	< 0.50	<1.0	NA	NA
	11/11/04			NA	<50	< 0.50	< 0.50	< 0.50	<1.0	NA	NA
	02/11/05			NA	<50	< 0.50	< 0.50	< 0.50	<1.0	NA	NA
	05/19/05			NA	<50	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA
	08/16/05			NA	<50	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA
	11/16/05			NA	<50	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA
	02/20/06			NA	<50	< 0.50	< 0.50	< 0.50	<1.0	NA	NA
	05/17/06				<50	<0.50	<0.50	<0.50	<1.0	NA	NA

Table 1

Groundwater Monitoring Data and Analytical Results

Former Unocal Bulk Plant No. 0813 122 Leslie Street Ukiah, California

EXPLANATIONS:

TOC = Top of Casing TPHg = Total Petroleum Hydrocarbons as Gasoline (ppb) = Parts per billion

DTW = Depth to Water B = Benzene -- = Not Measured/Not Calculated (ft.) = Feet T = Toluene QA = Quality Assurance/Trip Blank

GWE = Groundwater Elevation E = Ethylbenzene mg/L = Milligrams per liter (msl) = Mean Sea Level X = Xylenes $\mu g/L = Microgram per liter$

TPHd = Total Petroleum Hydrocarbons as Diesel TOG = Total Oil and Grease

NS Not Sampled; unable to access well due to parked car NA = Not Analyzed

- * TOC elevations were re-surveyed on April 13, 2005 by Morrow Surveying. Historically, TOC elevation for MW-9 was surveyed September 4, 2003, by Morrow Surveying, Inc. referencing the previous benchmark. TOC elevations are referenced to msl, and were surveyed June 24, 2002, by Morrow Surveying, Inc. The benchmark used for the survey was a City of Ukiah benchmark.
- Well development performed.
- Laboratory report indicates a hydrocarbon pattern is present in the requested quantitation range but does not resemble the pattern of the requested fuel.
- Laboratory report indicates no sample remained for re-extraction.
- ⁴ Although sample contains compounds in the retention time range associated with gasoline, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.
- Although sample contains compounds in the retention time range associated with diesel, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on diesel.
- The sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.
- Analysis of this sample indicates the presence of hydrocarbons lower in molecular weight than diesel
- The sample chromatographic pattern does not resemble the diesel standard used for calibration
- The method blank contains analyte at a concentration above the MRL; sample reporting limits were raised as necessary.
- The sample chromatogram contains resolved peaks within the diesel range that do not resemble diesel.

Table 2 **Ozone Sparging System Monitoring** Data and Analytical Results for MW-1 and MW-2

Former Unocal Bulk Plant No. 0813 122 Leslie Street Ukiah, California

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	Т	E	Х	Cr+6	рН	Molybdenum	Selenium	Vanadium	Bromate	Bromide
TOC(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	pH Units	$(\mu g/L)$				
MW-1	4/14/05*	NT	NT	4,700	1,100	ND	ND	ND	ND	ND	6.5	ND	ND	ND	ND	120
	4/20/05*	NT	NT	260	160	ND	ND	ND	ND	ND	6.8	ND	ND	ND	ND	57
608.62	5/09/05*	NT	NT	97	540	ND	ND	ND	ND	ND	7.1	ND	ND	ND	ND	39
	5/19/05	6.04	602.58	4,500	1,100	ND	ND	ND	ND	ND	6.6	ND	ND	ND	NA	NA
	6/17/05*	NT	NT	180	220	ND	ND	ND	ND	ND	7.0	ND	ND	ND	ND	31
	8/16/05	11.80	596.82	83,000	2,000	0.39	< 0.30	<0.50	<0.50	<10	6.7	<20	<5	<10	<5	6.5
	9/19/05	15.20	593.42	3,600	1,200	0.35	< 0.30	<0.5	<0.50	<1.0	6.3	<20	<5.0	<10	<5	83
	10/18/05	17.70	590.92	8,000	2,100	0.45	< 0.30	<0.5	<0.50	<1.0	7.1	<20	<5.0	<10	<5	22
	11/16/05	17.30	591.32	10,000	360	0.41	< 0.30	<0.50	<0.50	<1.0	6.8	<20	<5.0	<10	<5	72
	12/15/05	12.90	595.72	11,000	1,000	0.50	< 0.30	< 0.50	< 0.50	<1.0	6.2	<20	<5.0	<10	<5	55
	1/26/06	5.80	602.82	120,000	860	< 0.50	< 0.50	4.9	4.3	<1.0	6.60	<20	<5.0	<20	<20	<100
	2/20/06	7.24	601.38	13,000	1400 ¹	< 0.50	4.4	7.6	5.6	<1.0	6.41	<20	<5.0	<20	<20	<100
	3/23/06	5.64	602.98	21,000 ²	550 ¹	< 0.50	< 0.50	2.7	3.4	<1.0	6.52	<20	<5.0	<20	<5.0	<100
	5/17/06	7.61	601.01	490 ²	580 ¹	<0.50	<0.50	6.2	4.4	<1.0	6.21	<20	<5.0	<10	<5.0	<100
	6/28/06	10.44	598.18	1,800 ²	580 ¹	<0.50	<0.50	3.2	3.7	<1.0	6.68	<20	<5.0	<20	<5.0	<15
MW-2	4/14/05*	NT	NT	79	ND	ND	ND	ND	ND	ND	6.4	ND	ND	ND	ND	250
	4/20/05*	NT	NT	2,500	290	ND	ND	ND	ND	ND	6.5	ND	ND	ND	ND	69
608.56	5/09/05*	NT	NT	310	190	ND	ND	ND	ND	ND	6.8	ND	ND	2.4	ND	85
	5/19/05	7.73	600.83	91	170	ND	ND	ND	ND	ND	6.7	ND	ND	1.6	NA	NA
	6/17/05*	NT	NT	260	ND	ND	ND	ND	ND	0.1	6.8	ND	ND	ND	ND	49
	8/16/05	10.55	598.01	910	290	< 0.30	< 0.30	< 0.50	< 0.50	11	6.9	<20	<5	27	<5	81
	9/19/05	16.00	592.56	120	150	< 0.3	< 0.30	< 0.50	< 0.50	<1.0	6.5	<20	<5.0	<10	<5	79
	10/18/05	19.54	589.02	<50	<50	< 0.3	< 0.30	< 0.50	< 0.50	<1.0	7.3	<20	<5.0	<10	16	23
	11/16/05	18.95	589.61	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	<1.0	7.2	<20	<5.0	<10	<5	69
	12/15/05	12.80	595.76	<50	140	0.37	0.33	1.1	2.3	<1.0	6.7	<20	<5.0	<10	<5	61
	1/26/06	6.40	602.16	720	91	< 0.50	< 0.50	2.1	1.0	<1.0	6.74	<20	<5.0	<20	<20	150
	2/20/06	8.11	600.45	550	77	<0.50	< 0.50	2.0	1.0	<1.0	6.64	<20	<5.0	<20	<20	<100
	3/23/06	7.21	601.35	120 ²	66 ¹	<0.50	<0.50	1.3	1.0	<1.0	6.73	<20	<5.0	<20	<5.0	<100
	5/17/06	6.52	602.04	130 ²	<50	<0.50	<0.50	0.70	<1.0	<1.0	6.46	<20	<5.0	13	<5.0	<100
	6/28/06	11.09	597.47	210 ²	<50	<0.50	<0.50	0.51	<1.0	<1.0	7.03	<20	<5.0	<20	<5.0	<15

EXPLANATIONS:

TPHd = Total Petroleum Hydrocarbons as Diesel TPHg = Total Petroleum Hydrocarbons as Gasoline

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes (total)

Cr+6 = Hexavalent chromium

ND = Non-detect NA = Not analyzed

μg/L = micrograms per liter

TOC = Top of Casing

ft = feet above mean sea level

DTW = Depth to Water

GWE = Groundwater Elevation -- = Not Measured/Not Calculated

06940-264 1 of 1 **ENSR Corporation**

^{* =} Samples collected as part of the monthly ozone system monitoring & sampling were collected as grab samples. All samples collected as part of the quarterly groundwater monitoring program and monthly samples collected after 8/16/05 were collected following a three-casing-volume purge.

^{1 =} Although sample contains compounds in the retention time range associated gasoline, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.

^{2 =} Although sample contains compounds in the retention time range associated diesel, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on diesel.

ATTACHMENT A

FIELD METHODS AND PROCEDURES

FIELD METHODS AND PROCEDURES Unocal Site No. 813, 122 Leslie Street, Ukiah, CA (Site) ENSR Project No. 06940-264

The following section describes field procedures that are to be used by ENSR personnel in the performance and quality management of the field work and data evaluation tasks involved with this project.

1. HEALTH AND SAFETY PLAN

The performance of fieldwork and other project services by ENSR and ENSR's subcontractors will be conducted according to guidelines established in the most current, Site-specific Health And Safety Plan (HASP). The HASP describes the hazards that may be encountered in the field and specifies protective equipment, work procedures, and emergency information. A copy of the HASP is maintained at the Site. Prior to performing work at the Site, personnel will have read the HASP, and sign that they have read the HASP and will perform work at the Site in accordance with the HASP.

2. DECONTAMINATION

Decontamination of equipment brought to and used at the Site is performed in accordance with ENSR SOP No. 7600. The soap solution and rinse water used for decontamination are collected and properly disposed of as described in Section 7.

3. GROUNDWATER DEPTH ASSESSMENT

Initially, all wells for groundwater depth assessment are opened and allowed to equilibrate to atmospheric pressure. Measuring the thickness of liquid-phase hydrocarbons (LPH), if present, and the depth to groundwater are performed in accordance with the applicable sections of ENSR SOP No. 7130. The water level measurement probe is subjectively analyzed for LPH sheen after each measurement.

4. SUBJECTIVE ANALYSIS OF GROUNDWATER

Prior to purging for groundwater monitoring, a groundwater sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

5. GROUNDWATER SAMPLE COLLECTION

5.1 Purged Groundwater Sample

The purging and collection of a groundwater sample are performed in accordance with ENSR SOP No. 7130. Well purging completion standards include minimum purge volumes, and the stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature as described in ENSR SOP Nos. 7124, 7121, and 7123, respectively. Groundwater parameter readings are obtained at regular intervals during the purging process (no less than once per case volume).

5.2 Dissolved Oxygen Measurement

Dissolved oxygen (D.O.) readings are collected in accordance with ENSR SOP No. 7122 using HORIBA meters (e.g. HORIBA Model U-22 or equivalent D.O. meter). These meters are equipped with a stirring device that enables the collection of in-situ readings.

5.3 Oxidation Reduction Potential (Redox Potential) Measurement

Redox potential readings are obtained with HORIBA meters (e.g. HORIBA Models U-22 or equivalent ORP meter). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the manufacturer's instruction manual.

5.4 Grab Groundwater Sample Collection

A grab groundwater sample is collected by lowering a disposable bailer to sufficient depth that the length of the bailer is below the water table.

6. PACKAGING AND SHIPMENT OF SAMPLES

Soil, groundwater, and/or gas samples from field work are packaged and shipped in accordance with ENSR SOP No. 7510.

7. INVESTIGATION-DERIVED WASTE MANAGEMENT

The purge water, decontamination residuals, and aqueous-based, liquid wastes from field work are placed in 55-gallon drums and temporarily stored on-site pending evaluation of disposal options. Solid wastes, such as disposable bailers and paper wipes, generated during field work are packaged in an appropriate container and separately from liquid wastes. Final disposal is performed consistent with accepted regulatory requirements and consistent with requirements specified by Unocal.

8. QUALITY CONTROL

Quality control samples are collected and submitted for analysis. The quality control samples may include field blanks, rinsate blanks, duplicate sample(s), and matrix spike/matrix spike duplicate samples as described in Section 5.0 of ENSR SOP No. 7130.

9. DOCUMENTATION

Documentation of field work is performed consistent with Section 6.0 of ENSR SOP No. 7130 and ENSR SOP No. 7515.

ATTACHMENT B

GROUNDWATER SAMPLING INFORMATION DATA

WELL GAUGING SHEET

Site Address:

122 Leslie St., Ukiah, CA

ENSR Job #:

06940-264-100

Unocal Job #:

813

Recorded by: Hather Tansha

Well ID	PID	TOC/		Casing Diameter	Time Gauged	Depth to Water	Total Depth	Depth to Product	Product Thickness	Notes
	3.5			2"		8.4	24.61	4 1/m	,	TAKE D.O. READING
MW-9	15.7			2"	9:07		23.41	- Proceedings	to Commission of the Commissio	water in well he
MW-8	4.7			2"	Continues of the Contin	6.51	24.79	overend (Upinis) AAA Vereld (A (Upinis)	**************************************	
MW-7	38.0	The second state of the se	,1-2	4	9.17	7.13	24.58	ACONOMINATION OF THE PROPERTY	Nonin-Let Nickinstell Annual Communication of the C	
MW-4	21.3	12 LV43-3 lang copy companies of the first of the		2"	9:21	7.09	25.91	(A) A beautiful by Annual (A) Annual (A)	**************************************	Water in well h
MW-5	21.3	- 12		2"	9:25	8.00	25.91	populari de comunicación de co	Grades), your garden	water in well h
MW-3	25.3		Sounday of Frequency A Volume 149 Annual Ann	2"	9-25	8:08	24.29	Coppassion of Control Control	QQ CC puncy Austrian Address	
MW-2	13,2			2"	9:33	6.51	23.39	BAIL COMMAND TO AN	ROLL AND RESPONSES	
MW-1	7.1			2"	9:37	7.6	24.11	acquisor (1889-81) anniana ctaat	Manager Water Street	
MW-12	NA		NA	NA	NA	NA NA	NA NA	**CLI-Antonia Balling		DO NOT SAMPLE
			· · · · · · · · · · · · · · · · · · ·	4	*					
		And the second s								

COMMENTS:

CLIENT:	UNOCAL			_	PROJECT	ľ NO.:	06940-264-100)
SITE:	122 Leslie 813	st., Ukiah			WELL DE	SIGNATIOI	1: MW-3	
SAMPLER:	FR	ave	<u> </u>	H		ATE/TIME:	5/7/06	1:50
Is setup of Is there sta Is well cap	anding water	er in the we		NO (YES YES YES	(above TC (If NO, ple	C belo ase explain in re	w TOC) marks)
Well diame	eter: (2">	3"	4"	6"	8"	·	
Purge Vol.	Multiplier:	0.16	0.37	0.65	1.47	2.61		
Depth to Bo	ottom (DTE	3): <u>24.29</u>	Depth to v	vater (DTW	<u>20,2</u>	Water colu	ımn (Ft): <u>6. 3</u>	
Case Volun	me: <u>2,5</u>	2	80% Rech	narge: <u>U</u>	<u> </u>	- (Water co	olumn (Ft) x 0.80) ,96
	uipment: Disposable Dedicated Watera				Submersib Positive aii Peristaltic	r displacem		Other
DO: 600		PRE PURÇ		SmV	DO: <u>« O</u>	P TEN	OST PURGE IP: 17-40	RP:
Time	Temp (F)(C)	Conc μs	luctivity ms	рН	Volume (Gal.)		Observation	is .
11:57	19.3	37.2	·	7/12	2.75	PARTIC	······	
[2:05]	<u>17.6</u>	3941		1,69	5,50	PACTIC		······
10111		39.5	<u>w. 7/ w. </u>	7.75	\$,25	PAR	icles -	
						····		
Total Volum Sample App QC Sample: Samped wit Sampling Ti Field Filter:	bearance: s collected th: Dispos ime: \$\frac{1725}{225}	্ৰি I at this we able bailer	: 🔍	Teflon baile		Depth to W	Dedicated tubing	
Sample bot 3- 40-mL VC		I; TPHg/ B		······································		***************************************	÷	**************************************

CLIENT: UNOCAL	PROJECT NO.: 06940-264-100					
122 Leslie St., Ukiah	INITIA DECIONATIONS BRIME					
SITE: 813	WELL DESIGNATION: MW-5					
SAMPLER: FRANKSPETH	START DATE/TIME: 5/17/06 10:50					
Is setup of traffic control devices required? NO	YES					
Is there standing water in the well box? NO	YES (above TOC below TOC) YES (If NO, please explain in remarks)					
Is well cap sealed and locked?	YES (If NO, please explain in remarks)					
Well diameter: 3" 4"	6" 8"					
Purge Vol. Multiplier 0.16 0.37 0.65	1.47 2.61					
	r): 7.57 Water column (Ft): 15.82					
Case Volume: 2.53 80% Recharge: 10	179 = DTB - (Water column (Ft) x 0.80)					
Purging Equipment:						
Disposable bailer	_ Submersible pumpOther					
Dedicated tubing	_ Positive air displacement Peristaltic pump					
Watera	_ t Cristanio pump					
PRE PURGE	POST PURGE					
DO: 05, TEMP: 15.6C ORP: 50MV	DO: 607 TEMP: 16.10 ORP: 5 mV					
mg/L	W5/lm					
Time Temp Conductivity pH	Volume Observations (Gal.)					
10:59 16.0° ZIIMS/m 7.68	2.75 WATER CLOUDY					
11'08 1C.1 70 Gm Sm 7,72	K 50 11 11					
1115 G, 1 20, CMS, M 7,75	975 (1					
HIND PORTEDION DIM III						
	1					
	24					
Total Volume Removed: \$175						
Sample Appearance:						
QC Samples collected at this well:	iler: Dedicated tubing:					
Samped with: Disposable bailer: Teflon ba						
Sampling Time:////ZZ Sampling Date:	Deptil to Water					
Field Filter:						
Sample bottles & associated lab analysis:						
3- 40-mL VOA/Ice/HCI; TPHg/ BTEX (8260)						
1- 1-L Amber/Ice/TRPH (1664) 1- 250-mL Amber/Ice/TPHd (8015M)						
1- 500-mL Poly/HNO3/ Total Lead (6010)						
Remarks:						
Remarks:						
(write on back if additional space is needed)	Flavious:					
Signature:	Review:					

CLIENT: UNOCAL	PROJECT NO.: 06940-264-100
122 Leslie St., Ukiah	WELL DESIGNATION: MW-2
SITE: 813 SAMPLER: TRANKSPETH	START DATE/TIME 5 17 05 12:45)
Is setup of traffic control devices required? NO Is there standing water in the well box? NO Is well cap sealed and locked? NO	YES YES (above TOC below TOC) YES (If NO, please explain in remarks)
Well diameter: 2" 3" 4"	6"8"
Purge Vol. Multiplier: 0.16 0.37 0.65	1.47 2.61
Depth to Bottom (DTB): 25.91 Depth to water (DTW	r): <u>6.57</u> Water column (Ft): <u>19.39</u>
Case Volume: 3/0 80% Recharge: 10	<u>└(0</u> = DTB - (Water column (Ft) x 0.80)
Purging Equipment:	
Disposable bailer	Submersible pump Other
Dedicated tubing Watera	_ Positive air displacement Peristaltic pump
PRE PURGE DO: Z3 TEMP: 16.2 ORP: 107MV	DO: POST PURGE ORP: 15 MV
Time Temp Conductivity pH	Volume Observations
(F) (C) μs ms	(Gal.)
12:57 16.3 27.6 MS/M 7,141	3,25 MURKEY
13'04 163 76,4WS/W 7.28	GSO MURKER
13:11 16.3 256WS/m 7:40	9,75 MURKER
Total Volume Removed: 9.75	
Sample Appearance: Clay	
QC Samples collected at this well:	
Samped with: Disposable bailer: Teflon ba	iler: Dedicated tubing:
Sampling Time: 16:14 Sampling Date: 5]	19/66 Depth to Water: 6.79
Field Filter: 400	
Sample bottles & associated lab analysis:	
3- 40-mL VOA/Ice/HCI; TPHg/ BTEX (8260)	
1- 1-L Amber/no preserv./TRPH (1664) 1- 250-mL Amber/Ice/TPHd (8015M)	
1- 500-mL Poly/HNO3/ Total Lead (6010)	
1-500-mL Poly/Ice/Bromate/Bromide (300.0) Chromium	1 VI (7199) / pH (150.1) ***
1- 500-mL Poly/HNO3/Molybdenum (200.7)/Selenium (2	200.9)/Vanadium (200.7) **** = Dissolved (Field Filtered)
Remarks: ***SHORT HOLD TIMES	
(write on back if additional space is needed)	Povious

CLIENT: UNOCAL	PROJECT NO.: 06940-264-100
122 Leslie St., Ukiah	WELL DESIGNATION: MW-1
SITE: 813	CTART DATE THAT 5/17/06 13:25
SAMPLER: TREADLE SPETTY	START DATE/TIME 5/1 1/08 13.10
	NO YES (the TOC) halow TOC)
s there standing water in the well box?	NO YES (above TOC below TOC) NO YES (If NO, please explain in remarks)
s well cap sealed and locked?	NO YES (If NO, please explain in remarks)
Well diameter: 2" 3"	4 ⁿ 8 ⁿ
Purge Vol. Multiplier 0.16 0.37	0.65 1.47 2.61
Depth to Bottom (DTB): 24.11 Depth to v	water (DTW): 7.61 Water column (Ft): 16.5
Case Volume: 2.64 80% Rech	narge: (0.9) = DTB - (Water column (Ft) x 0.80)
Purging Equipment:	
Disposable bailer	Submersible pump Other
Dedicated tubing	Positive air displacement Peristaltic pump
Watera	
PRE PURGE	POST PURGE - 10 M
DO: 306 TEMP: 6.20 ORP: 6	DO: OS TEMP: 1.2 CORP:
M3/m	pH Volume Observations
Time Temp Conductivity (F) (C) μs ms	pH Volume Observations (Gal.)
(F) (C) μs ms	
The same and the s	7110 C SO PANTICAS
13:46 C.9 Z5- 145/4	7.45 4.25 PAVETICLES
18:151 1C.8 ZS.8 MS/M	1.00 7.20 0 1110
Total Volume Removed: 4725	
	
Sample Appearance:	CO MW-1A @ 1609 :
Samped with: Disposable bailer:	Teflon bailer: Dedicated tubing:
Sampling Time: 16.04 Sampling	Depth to Water: <u>7.54</u>
Field Filter: ULD	
<u> </u>	
Sample bottles & associated lab analysis 3-40-mL VOA/Ice/HCI; TPHg/ BTEX (8260	}: }
1- 1-L Amber/no preserv./TRPH (1664)	1
1- 250-mL Amber/no preserv./TPHd (8015M	A)
1- 500-ml Poly/HNO3/ Total Lead (6010)	
1-500-mL Poly/ice/Bromate/Bromide (300.1	0) Chromium VI (7199) / pH (150.1) ***** = Dissolved (Field Filtered) /Selenium (200.9)/Vanadium (200.7) **** = Dissolved (Field Filtered)
1- 500-mL Poly/HNO3/Molybdenum (200.7) DUP - 3-40-mL glass vial/lce/HCI/TPHg/BT	EX (8260)
Remarks: <u>DUPLICATE Samples TPHq/B</u>	TEX ONLY *** SHORT HOLD TIME
(write on back if additional space is needed)	
(WITHE OTI DRICK IT AUGINIONAL SPACE IS INCOME)	Review:

CLIENT: UNOCAL	PROJECT NO.: 06940-264-100
122 Leslie St., Ukiah SITE: 813	WELL DESIGNATION: MW-9
SAMPLER: Hather Tautaker	START DATE/TIME: 5/17/06 10:45
Is setup of traffic control devices required? NO Is there standing water in the well box? NO Is well cap sealed and locked? NO	YES (above TOC below TOC) YES (If NO, please explain in remarks)
Well diameter: 2" 3" 4"	6"8"
Purge Vol. Multiplier: 0.16 0.37 0.65	1.47 2.61
	W): <u>8.10</u> Water column (Ft): <u>16.45</u>
Case Volume: 2.63 80% Recharge: 1	$=\frac{45}{15}$ = DTB - (Water column (Ft) x 0.80)
Purging Equipment: Disposable bailer Dedicated tubing Watera	Submersible pump Other Positive air displacement Peristaltic pump
PRE PURGE DO: 2,53 TEMP: 15.5 ORP: 210	DO: 2,76 TEMP: 14.0 ORP: 187
Time Temp Conductivity pH	Volume Observations (Gal.)
10:52 14.8 W. 6 n Skn 5,92	- 2,75 Brown , cloudy
1057 14.5 16.0 M S/M 5.83	3 5.50 Brown, counting
11:03 14.4 15.9 HS/M 5.79	1 8.85 Brown, cloudy
Total Volume Removed: 8.25 Sample Appearance: Fleet Condition QC Samples collected at this well: No Teflon by Sampling Time: 11.13 Sampling Time: 11.13 Sampling Date: Sam	
Sample bottles & associated lab analysis: 3- 40-mL VOA/Ice/HCI; TPHg/ BTEX (8260) 1- 1-L Amber/no preserv./TRPH (1664) 1- 250-MI Amber/no preserv./TPHd (8015M) 1- 500-mL Poly/HNO3/ Total Lead (6010) Remarks: LOCATION IN All	ou - straight across from
write on back if additional sprace is needed?	
Signature: MMW/W/////////////////////////////////	Review:

CLIENT:	UNOCAL	·	***	PROJEC [*]	T NO.:	06940-264-100	
SITE:	122 Leslie 813	St., Ukiah		WELL DE	SIGNATION	N: MW-6	
SAMPLER: Jakler Tausker			pero.	START D	ATE/TIME:	517/06	11:25
Is setup o	f traffic contr	ol devices required?	NO (YES			
Is there st	anding wate	r in the well box?	NO S	YES	(above TO		w TOC)
is well cap	sealed and	locked?	NO C	YES >	(If NO, plea	ase explain in rer	narks)
Well diam	eter:	2"3"	4"	6"	8"		
Purge Vol	. Multiplier	0.16 0.37	0.65	1.47	2.61		
Depth to B	Bottom (DTB): <u>23.41</u> Depth to w	/ater (DTW)	1: 4,39	_Water colu	mn (Ft): / \$ / C	<u> </u>
Case Volu	ıme: <u>Z / </u>	80% Rech	arge: <u>10</u>	<u>-6</u> = DTB	3 - (Water co	olumn (Ft) x 0.80	-91
Purging Ed							
\rightarrow	Disposable Dedicated t		***	Submersib	ole pump r displaceme		Other
	Watera	. 		Peristaltic	•	well	
	P	RE PURGE : 13.8 ORP: 2	26			OST PURGE	
DO: <u>2.4.</u>	2_ TEMP	: <u>13.6</u> ORP: <u>7</u>	<u> </u>	DO: <u>ろ</u> 、	1 <u>8</u> tem	IP: <u>13.2</u> OF	RP: 250
Time	Temp. (F) (C)	Conductivity	рН	Volume (Gal.)		Observation	S
11)33	13.8	15.0 M5/M	5.51	2.5	Cloud	h bow	
11736	13.5	14.7 m 3/m	5.58	5.0	Cloude	11	
11:42	13.4	14.8 m Sh	5.93	3.5	abud	d'bou	Y
		*				<u> </u>	
			<u> </u>				
	<u> </u>		<u></u>			······································	<u></u>
	ne Removed	d:	•				
Sample Ap	pearance: _	at this well:					
Samped wi	ith: Disposa	able bailer: X	Teflon bails			Dedicated tubing	-
Sampling T	ime:/ <u>[:4</u> =	→ Sampling D	ate:517	104		ater: 7.5(0	
					·		
Sample bo	ttles & ass	ociated lab analysis:					
		TPHg/ BTEX (8260) v./TRPH (1664)					
	•	reserv./TPHd (8015M)					
1- 500-mL I	Poly/HNO3/	Total Lead (6010)					
Remarks:							
	Λ.		GEO LEGISTRA				······································
\$	if additional sp	ice aneeded)	7				
Signature._	TWINK			Review:	· · · · · · · · · · · · · · · · · · ·		

CLIENT: UNOCAL	PROJECT NO.: 06940-264-100			
122 Leslie St., Ukiah SITE: 813	WELL DESIGNATION: MW-8			
SAMPLER: Heather Taisaler	START DATE/TIME: 5/17/06 12:03			
Is setup of traffic control devices required? NO Is there standing water in the well box? NO Is well cap sealed and locked? NO	YES YES (above TOC below TOC) YES (If NO, please explain in remarks)			
Well diameter: 2" 3" 4"	6" 8"			
Purge Vol. Multiplier 0.16 0.37 0.65	1.47 2.61			
Depth to Bottom (DTB): 24.79 Depth to water (DTV	/): <u>6.51</u> Water column (Ft): <u>18.28</u>			
Case Volume: 2.92 80% Recharge: 10	17 = DTB - (Water column (Ft) x 0.80)			
Purging Equipment: Disposable bailer Dedicated tubing Watera	_ Submersible pump Other Positive air displacement _ Peristaltic pump			
PRE PURGE DO: 2.90 TEMP: 13.0 ORP: 232	DO: 2.94 POST PURGE TEMP: 13-8 ORP: 278			
Time Temp Conductivity pH (F) (C) μs ms	Volume Observations (Gal.)			
12:19 14.4 15.6 m Sh 5.92	3 Cloudy brown			
12:27 4.1 15,5 uS/m 5.73	6 Cloudy Jorown			
12:32 14,1 15,7 M SM 5.70	9 cloudy, brown,			
Total Volume Removed: 9 Sample Appearance: 100 ds / bmw 2 QC Samples collected at this well: 10 Sampled with: Disposable bailer: 2 Sampling Time: 12:43 Sampling Date: 5 Field Filter: 2				
Sample bottles & associated lab analysis: 3- 40-mL VOA/Ice/HCI; TPHg/ BTEX (8260) 1- 1-L Amber/no preserv./TRPH (1664) 1- 250-MI Amber/no preserv./TPHd (8015M) 1- 500-mL Poly/HNO3/ Total Lead (6010) Remarks: (write on back if additional specific needed) Signature.	is between 2nd + 3rd pole of Haring north.			

CLIENT: UNOCAL	PROJECT NO.: 06940-264-100				
122 Leslie St., Uklah SITE: 813	WELL DESIGNATION: MW-7				
SAMPLER: Tauscher Tauscher	START DATE/TIME: 5/17/06 13:11				
Is setup of traffic control devices required? NO Is there standing water in the well box? NO Is well cap sealed and locked?	YES YES (above TOC below TOC) YES (If NO, please explain in remarks)				
Well diameter: 2" 3" 4"	6"8"				
Purge Vol. Multiplier: 0.16 0.37 0.65	1.47 2.61				
Depth to Bottom (DTB): 24.58 Depth to water (D	DTW): <u>7.13</u> Water column (Ft): <u>17.4</u> 5				
Case Volume: 1.34 80% Recharge: L	0.62 = DTB - (Water column (Ft) x 0.80)				
Purging Equipment: Disposable bailer Dedicated tubing Watera	Submersible pump DC /2 Other Positive air displacement Peristaltic pump				
DO: 3.19 TEMP: 17.5 ORP: 137	DO: 3.24 TEMP: 16-(ORP: 258				
Time Temp Conductivity pF	H Volume Observations (Gal.)				
	4 11.5 Clear				
	54 230 Clay				
13:40 15.0 14.8 n S/M 5.8	31 34.5 dear				
Total Volume Removed: 34.5 Sample Appearance: 16aV QC Samples collected at this well: 10 Sampled with: Disposable bailer: 2 Teflon bailer: Dedicated tubing: Sampling Time: 3.5 Sampling Date: 51400 Depth to Water: 7.26 Field Filter:					
Sample bottles & associated lab analysis: 3- 40-mL VOA/lce/HCl; TPHg/ BTEX (8260) 1- 1-L Amber/no preserv./TRPH (1664) 1- 250-Ml Amber/no preserv./TPHd (8015M) 1- 500-mL Poly/HNO3/ Total Lead (6010)					
Remarks:					
(write on back if additional space is needed) Signature:	Review:				

CLIENT: UNOCAL		PROJECT	NO.:	06940-264-100	
122 Leslie St., Ukiah SITE: 813	1	WELL DES	SIGNATION	N: MW-4	
SAMPLER: Clather Tausher		START DA	TE/TIME:	5/19/06	14:05
Is there standing water in the well box? N	10 2	YES YES YES	(above TO (If NO, ple	below TC ase explain in remark	
Well diameter: 2" 3" 4"		6"	8"		***************************************
			2.61		
Depth to Bottom (DTB): 25.91 Depth to wat	ter (DTW):	7,69	Water colu	ımn (Ft): <u>18, 2</u> 2	٠
Case Volume: 2-91 80% Recharge	ge: <u> </u>	<u>34</u> = DTB	- (Water c	olumn (Ft) x 0.80)	``.
Purging Equipment: Disposable bailer Dedicated tubing Watera		Submersibl Positive air Peristaltic p	displacem	ent	Other
DO: 0,27 TEMP: 18.1 ORP: 20	X	DO: 0.1	O TEN	OST PURGE MP: 17.3 ORP:	147
Time Temp Conductivity (F) (C) μs ms	рН	Volume (Gal.)		Observations	
	6.15	3	Cle	ar	***************************************
14:28 17.8 23.4 m Sm (603	6	U	(Q1) S	
14:29 19:8 23:1 MS/M F	5,99	Q	00		
		*			
					······
Total Volume Removed:					
Sample Appearance:					
QC Samples collected at this well: NO Samped with: Disposable bailer: X T	eflon baile			Dedicated tubing:	
Sampling Time: 4.39 Sampling Da	some !		 Depth to V	Vater: 7.69	
Sample bottles & associated lab analysis: 3- 40-mL VOA/Ice/HCI; TPHg/ BTEX (8260) 1- 1-L Amber/no preserv./TRPH (1664) 1- 250-MI Amber/no preserv./TPHd (8015M) 1- 500-mL Poly/HNO3/ Total Lead (6010)					
Remarks:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	<u> </u>	***************************************
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		····
(write on back in additionar space is needed) Signature:	M	Review:			www.charlandardardardardardardardardardardardardard

ATTACHMENT C

LABORATORY ANALYTICAL RESULTS WITH CHAIN-OF-CUSTODY DOCUMENTATION

3249 Fitzgerald Road Rancho Cordova, CA 95742

May 30, 2006

CLS Work Order #: CPE0615 COC #: No Number

Mike Berrington ENSR - Sacramento 10461 Old Placerville Rd., Suite 170 Sacramento, CA 95827-2508

Project Name: Frmr. Unocal #0813, 122 Leslie St.

Ukiah, Ca.

Enclosed are the results of analyses for samples received by the laboratory on 05/18/06 12:10. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 1 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

ENSR AECC	JIVI														Lab: CLS
															TAT: Standard
Report results to: Name Company Mailing Address City, State, Zip Telephone No. Fax No.		Placerville to, CA 9582		e 170	-		-	Anai	lyse	s R	eque	Site EN: Und Glo	SR I ocal	dress: Vo.	06940-264-100 813
E-Mail	mberring	ton@ensr.c	<u>com</u>							0.0)		0.7)			
Special instructions and/or Detection limit for Van Detection limit for Sele Detection limit for Mol Detection limit for Bro Detection limit for Bro Sample Identification	adium by 200 enium by(200 ybdenum by(mate (300.0)) mide (300.0)) Date Sampled	0.7 must be 1.9) must be (200.9) must must be <5 i must be <15 Time Sampled	<10 ug/L <5 ug/L t be <20 ug/ ug/L	No. of Conts.	TPHg (8015)	BTEX (8021B)	TRPH (1664HEMSGT)	Total Lead (6010)	TPHd (8015)	Bromate (300) / Bromide (300.0)	Chromium VI (7199)	Molybdenum / Vanadium (200.7)	Selenium (200.9)	pH (150.1)	Sample Condition/Comments
MW-5	5/17/06		GW	6	X	X	X	X	X						HCL/HN03
MWB	5/17/60	121.20	GW	C	X	X	K	X	X						HCL/HND3
•															
4															
										-					
Collected by: FCA Relinquished by: Relinquished by: V Method of Shipment	remok	SPETH	Date/Time Date/Time Date/Time	5/18/00	8:4			Rec Rec	eive	ed b	y:		!	MA/A	Date/Time S 17 06 CE

Page 2 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

ation 122 Leslie Street, Ukiah 06940-264-100 813 T0604593441
Sample Condition/Comments
field filtered for metals HCL/HNO2
field filtered for netals HCL/HNO2
HCL/H103
HCC/HANO3
4cc/ANO2
4ce/HNO2
HCC ATABO
HCL 3
Date/Time 5 17/26
Date/Time 5 17/06 18:45 Date/Time 5 17/06 18:45

Page 3 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPE0615-01) Water	Sampled: 05/17/06 16:04	Received:	05/18/06	12:10					
Bromide	ND	0.10	mg/L	1	CP03780	05/22/06	05/22/06	EPA 300.0	A-COM
Hexavalent Chromium	ND	1.0	μg/L	"	CP03723	05/18/06	05/18/06	EPA 7199	
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	"	CP03728	05/18/06	05/18/06	EPA 1664 w/SGT	
pН	6.21		pH Units	"	CP03724	05/18/06	05/18/06	EPA 150.1	
MW-2 (CPE0615-02) Water	Sampled: 05/17/06 16:14	Received:	05/18/06	12:10					
Bromide	ND	0.10	mg/L	1	CP03780	05/22/06	05/22/06	EPA 300.0	A-COM
Hexavalent Chromium	ND	1.0	μg/L	"	CP03723	05/18/06	05/18/06	EPA 7199	
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	"	CP03728	05/18/06	05/18/06	EPA 1664 w/SGT	
pH	6.46		pH Units	"	CP03724	05/18/06	05/18/06	EPA 150.1	
MW-9 (CPE0615-03) Water	Sampled: 05/17/06 11:13	Received:	05/18/06	12:10					
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	1	CP03728	05/18/06	05/18/06	EPA 1664 w/SGT	
MW-6 (CPE0615-04) Water	Sampled: 05/17/06 11:47	Received:	05/18/06	12:10					
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	1	CP03728	05/18/06	05/18/06	EPA 1664 w/SGT	
MW-8 (CPE0615-05) Water	Sampled: 05/17/06 12:43	Received:	05/18/06	12:10					
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	1	CP03728	05/18/06	05/18/06	EPA 1664 w/SGT	
MW-7 (CPE0615-06) Water	Sampled: 05/17/06 13:54	Received:	05/18/06	12:10					
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	1	CP03728	05/18/06	05/18/06	EPA 1664 w/SGT	
MW-4 (CPE0615-07) Water	Sampled: 05/17/06 14:39	Received:	05/18/06	12:10					
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	1	CP03728	05/18/06	05/18/06	EPA 1664 w/SGT	

Page 4 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5 (CPE0615-10) Water Samp	led: 05/17/06 11:22	Received:	05/18/06	5 12:10					
Silica Gel Treated HEM (SGT-HEM)	ND	5.0	mg/L	1	CP03728	05/18/06	05/18/06	EPA 1664 w/SGT	
MW-3 (CPE0615-11) Water Samp	led: 05/17/06 12:20	Received:	05/18/06	5 12:10					
Silica Gel Treated HEM (SGT-HEM)	ND	5.0	mg/L	1	CP03728	05/18/06	05/18/06	EPA 1664	_

Page 5 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPE0615-01) Water	Sampled: 05/17/06 16:04	Received:	05/18/06	12:10					
Diesel	0.49	0.050	mg/L	1	CP03752	05/19/06	05/19/06	EPA 8015M	D-DSL
MW-2 (CPE0615-02) Water	Sampled: 05/17/06 16:14	Received:	05/18/06	12:10					
Diesel	0.13	0.050	mg/L	1	CP03752	05/19/06	05/19/06	EPA 8015M	D-DSL
MW-9 (CPE0615-03) Water	Sampled: 05/17/06 11:13	Received:	05/18/06	12:10					
Diesel	ND	0.050	mg/L	1	CP03752	05/19/06	05/19/06	EPA 8015M	·
MW-6 (CPE0615-04) Water	Sampled: 05/17/06 11:47	Received:	05/18/06	12:10					
Diesel	ND	0.050	mg/L	1	CP03752	05/19/06	05/19/06	EPA 8015M	·
MW-8 (CPE0615-05) Water	Sampled: 05/17/06 12:43	Received:	05/18/06	12:10					
Diesel	ND	0.050	mg/L	1	CP03752	05/19/06	05/19/06	EPA 8015M	
MW-7 (CPE0615-06) Water	Sampled: 05/17/06 13:54	Received:	05/18/06	12:10					
Diesel	ND	0.050	mg/L	1	CP03752	05/19/06	05/19/06	EPA 8015M	·
MW-4 (CPE0615-07) Water	Sampled: 05/17/06 14:39	Received:	05/18/06	12:10					
Diesel	ND	0.050	mg/L	1	CP03752	05/19/06	05/19/06	EPA 8015M	
MW-5 (CPE0615-10) Water	Sampled: 05/17/06 11:22	Received:	05/18/06	12:10					
Diesel	ND	0.050	mg/L	1	CP03752	05/19/06	05/19/06	EPA 8015M	
MW-3 (CPE0615-11) Water	Sampled: 05/17/06 12:20	Received:	05/18/06	12:10					
Diesel	0.062	0.050	mg/L	1	CP03752	05/19/06	05/19/06	EPA 8015M	D-DSL

Page 6 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPE0615-01) Water	Sampled: 05/17/06 16:04	Received:	05/18/06	12:10					
Gasoline	580	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	GAS-1
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	6.2	0.50	"	"	"	"	"	"	
Xylenes (total)	4.4	1.0	"	"	"	"	"	II .	
Surrogate: o-Chlorotoluene (G	Gas)	248 %	65	-135	"	"	"	"	QS-4
MW-2 (CPE0615-02) Water	Sampled: 05/17/06 16:14	Received:	05/18/06	12:10					
Gasoline	ND	50	μg/L	1	CP03845	05/22/06	05/24/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	0.70	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	n .	
Surrogate: o-Chlorotoluene (G	Gas)	110 %	65	-135	"	"	"	"	
MW-9 (CPE0615-03) Water	Sampled: 05/17/06 11:13	Received:	05/18/06	12:10					
Gasoline	ND	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	n .	
Surrogate: o-Chlorotoluene (G	Gas)	81.0 %	65	-135	"	"	"	"	
MW-6 (CPE0615-04) Water	Sampled: 05/17/06 11:47	Received:	05/18/06	12:10					
Gasoline	ND	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	n n	
Xylenes (total)	ND	1.0	"	"	"	"	n .	II .	
Surrogate: o-Chlorotoluene (G	Gas)	73.0 %	65	-135	"	"	"	"	

Page 7 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 (CPE0615-05) Water	Sampled: 05/17/06 12:43	Received:	05/18/06	12:10					
Gasoline	ND	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	eas)	86.0 %	65	-135	"	"	"	"	
MW-7 (CPE0615-06) Water	Sampled: 05/17/06 13:54	Received:	05/18/06	12:10					
Gasoline	ND	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	ias)	71.5 %	65	-135	"	"	"	11	
MW-4 (CPE0615-07) Water	Sampled: 05/17/06 14:39	Received:	05/18/06	12:10					
Gasoline	ND	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	ias)	89.5 %	65	-135	"	"	"	11	
MW-1A (CPE0615-08) Water	r Sampled: 05/17/06 16:09	Received	l: 05/18/0	06 12:10					
Gasoline	270	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	m .	
Toluene	ND	0.50	"	"	"	"	"	m .	
Ethylbenzene	2.0	0.50	"	"	"	"	"	"	
Xylenes (total)	1.4	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	ias)	140 %	65	-135	"	"	"	"	QS-4

Page 8 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
QA (CPE0615-09) Water	Sampled: 05/17/06 00:00	Received: 05/	18/06 12	:10					
Gasoline	ND	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene	(Gas)	90.5 %	65-	-135	"	"	"	"	
MW-5 (CPE0615-10) Wate	er Sampled: 05/17/06 11:	22 Received:	05/18/06	12:10					
Gasoline	ND	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene	(Gas)	88.5 %	65-	-135	"	"	"	11	
MW-3 (CPE0615-11) Wate	er Sampled: 05/17/06 12:	20 Received:	05/18/06	12:10					
Gasoline	ND	50	μg/L	1	CP03823	05/19/06	05/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	m .	
Toluene	ND	0.50	"	"	"	"	"	m .	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	II .	
Surrogate: o-Chlorotoluene	(Gas)	93.5 %	65.	-135	"	"	"	"	

Page 9 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPE0615-01) Water	Sampled: 05/17/06 16:04	Received:	05/18/06	12:10					
Molybdenum	ND	20	μg/L	1	CP03873	05/24/06	05/26/06	EPA 200.7	
Vanadium	ND	10	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	CP03885	05/24/06	05/24/06	EPA 200.8	
MW-2 (CPE0615-02) Water	Sampled: 05/17/06 16:14	Received:	05/18/06	12:10					
Molybdenum	ND	20	μg/L	1	CP03873	05/24/06	05/26/06	EPA 200.7	
Vanadium	13	10	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	CP03885	05/24/06	05/24/06	EPA 200.8	

Page 10 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Metals by EPA 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPE0615-01) Water	Sampled: 05/17/06 16:04	Received:	05/18/06	12:10					
Lead	ND	50	μg/L	1	CP03873	05/24/06	05/26/06	EPA 6010B	
MW-2 (CPE0615-02) Water	Sampled: 05/17/06 16:14	Received:	05/18/06	12:10					
Lead	ND	50	μg/L	1	CP03873	05/24/06	05/26/06	EPA 6010B	
MW-9 (CPE0615-03) Water	Sampled: 05/17/06 11:13	Received:	05/18/06	12:10					
Lead	ND	50	μg/L	1	CP03873	05/24/06	05/26/06	EPA 6010B	
MW-6 (CPE0615-04) Water	Sampled: 05/17/06 11:47	Received:	05/18/06	12:10					
Lead	ND	50	μg/L	1	CP03873	05/24/06	05/26/06	EPA 6010B	
MW-8 (CPE0615-05) Water	Sampled: 05/17/06 12:43	Received:	05/18/06	12:10					
Lead	ND	50	μg/L	1	CP03873	05/24/06	05/26/06	EPA 6010B	
MW-7 (CPE0615-06) Water	Sampled: 05/17/06 13:54	Received:	05/18/06	12:10					
Lead	ND	50	μg/L	1	CP03873	05/24/06	05/26/06	EPA 6010B	
MW-4 (CPE0615-07) Water	Sampled: 05/17/06 14:39	Received:	05/18/06	12:10					
Lead	ND	50	μg/L	1	CP03873	05/24/06	05/26/06	EPA 6010B	
MW-5 (CPE0615-10) Water	Sampled: 05/17/06 11:22	Received:	05/18/06	12:10					
Lead	ND	50	μg/L	1	CP03873	05/24/06	05/26/06	EPA 6010B	
MW-3 (CPE0615-11) Water	Sampled: 05/17/06 12:20	Received:	05/18/06	12:10					
Lead	ND	50	μg/L	1	CP03873	05/24/06	05/26/06	EPA 6010B	

Page 11 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Dk	Reporting	T T 14.	Spike	Source	0/ DEC	%REC	DDD	RPD	NI-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CP03723 - General Prep										
Blank (CP03723-BLK1)				Prepared 6	& Analyz	ed: 05/18/	06			
Hexavalent Chromium	ND	1.0	$\mu g/L$							
LCS (CP03723-BS1)				Prepared 6	& Analyz	ed: 05/18/	06			
Hexavalent Chromium	4.22	1.0	μg/L	5.00		84.4	80-120			
LCS Dup (CP03723-BSD1)				Prepared a	& Analyz	ed: 05/18/	06			
Hexavalent Chromium	4.00	1.0	μg/L	5.00	•	80.0	80-120	5.35	20	
Matrix Spike (CP03723-MS1)	Sor	arce: CPE06	04-01	Prepared 6	& Analyz	ed: 05/18/	06			
Hexavalent Chromium	4.61	1.0	μg/L	5.00	ND	92.2	75-125			
Matrix Spike Dup (CP03723-MSD1)	Sor	arce: CPE06	04-01	Prepared & Analyzed: 05/18/06						
Hexavalent Chromium	4.69	1.0	$\mu g/L$	5.00	ND	93.8	75-125	1.72	25	
Batch CP03728 - Solvent Extract										
Blank (CP03728-BLK1)				Prepared of	& Analyz	ed: 05/18/	06			
Silica Gel Treated HEM (SGT-HEM)	ND	5.0	mg/L	•						
LCS (CP03728-BS1)				Prepared a	& Analyz	ed: 05/18/	06			
Silica Gel Treated HEM (SGT-HEM)	41.1	5.0	mg/L	40.0		103	80-120			
LCS Dup (CP03728-BSD1)				Prepared 6	& Analyz	ed: 05/18/	06			
Silica Gel Treated HEM (SGT-HEM)	39.8	5.0	mg/L	40.0	•	99.5	80-120	3.21	20	
Batch CP03780 - General Prep										
Blank (CP03780-BLK1)				Prepared 6	& Analyz	ed: 05/22/	06			
Bromide	ND	0.10	mg/L	•						

Page 12 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP03780 - General Prep										
LCS (CP03780-BS1)				Prepared	& Analyze	ed: 05/22/	06			
Bromide	2.01	0.10	mg/L	2.00		100	80-120			
LCS Dup (CP03780-BSD1)				Prepared	& Analyze	ed: 05/22/	06			
Bromide	2.01	0.10	mg/L	2.00		100	80-120	0.00	20	
Matrix Spike (CP03780-MS1)	Sou	ırce: CPE06	73-01	Prepared	& Analyze	ed: 05/22/	06			
Bromide	2.17	0.10	mg/L	2.00	0.17	100	75-125			
Matrix Spike Dup (CP03780-MSD1)	Sou	ırce: CPE06	73-01	Prepared	& Analyze	ed: 05/22/	06			
Bromide	2.20	0.10	mg/L	2.00	0.17	102	75-125	1.37	25	

Page 13 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Extractable Petroleum Hydrocarbons by EPA Method 8015M - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP03752 - EPA 3510B GCNV										
Blank (CP03752-BLK1)				Prepared	& Analyze	ed: 05/19/	06			
Diesel	ND	0.050	mg/L							
Motor Oil	ND	0.050	"							
LCS (CP03752-BS1)				Prepared	& Analyze	ed: 05/19/	06			
Diesel	2.55	0.050	mg/L	2.50		102	65-135			
LCS Dup (CP03752-BSD1)				Prepared	& Analyze	ed: 05/19/	06			
Diesel	2.59	0.050	mg/L	2.50		104	65-135	1.56	30	
Matrix Spike (CP03752-MS1)	So	urce: CPE05	31-01	Prepared	& Analyze	ed: 05/19/	06			
Diesel	2.62	0.050	mg/L	2.50	ND	105	46-137			
Matrix Spike Dup (CP03752-MSD1)	So	urce: CPE05	31-01	Prepared	& Analyze	ed: 05/19/	06			
Diesel	2.65	0.050	mg/L	2.50	ND	106	46-137	1.14	30	

Page 14 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Gas/BTEX by GC PID/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP03823 - EPA 5030 Water GC										
Blank (CP03823-BLK1)				Prepared:	05/19/06	Analyzed	: 05/23/06			
Gasoline	ND	50	μg/L	•		•				
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	1.0	"							
Surrogate: o-Chlorotoluene (BTEX)	22.9		"	20.0		114	65-135			
Surrogate: o-Chlorotoluene (Gas)	18.5		"	20.0		92.5	65-135			
LCS (CP03823-BS1)				Prepared:	05/19/06	Analyzed	: 05/23/06			
Benzene	20.7	0.50	μg/L	20.0		104	70-140			
Toluene	18.9	0.50	"	20.0		94.5	70-140			
Ethylbenzene	20.0	0.50	"	20.0		100	70-140			
Xylenes (total)	63.9	1.0	"	60.0		106	70-140			
Surrogate: o-Chlorotoluene (BTEX)	20.5		"	20.0		102	65-135			
LCS Dup (CP03823-BSD1)				Prepared:	05/19/06	Analyzed	: 05/23/06			
Benzene	20.9	0.50	μg/L	20.0		104	70-140	0.962	30	
Toluene	19.8	0.50	"	20.0		99.0	70-140	4.65	30	
Ethylbenzene	21.0	0.50	"	20.0		105	70-140	4.88	30	
Xylenes (total)	67.6	1.0	"	60.0		113	70-140	5.63	30	
Surrogate: o-Chlorotoluene (BTEX)	21.4		"	20.0		107	65-135			
Matrix Spike (CP03823-MS1)	So	urce: CPE06	15-07	Prepared:	05/19/06	Analyzed	: 05/23/06			
Benzene	19.4	0.50	μg/L	20.0	ND	97.0	60-140			
Toluene	17.8	0.50	"	20.0	ND	89.0	60-140			
Ethylbenzene	18.9	0.50	"	20.0	ND	94.5	60-140			
Xylenes (total)	59.5	1.0	"	60.0	ND	99.2	60-140			
Surrogate: o-Chlorotoluene (BTEX)	20.0		"	20.0		100	65-135			

Page 15 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Gas/BTEX by GC PID/FID - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CP03823 - EPA 5030 Water G	С									
Matrix Spike Dup (CP03823-MSD1)	Sou	arce: CPE06	15-07	Prepared:	05/19/06	Analyzed	: 05/23/06			
Benzene	20.0	0.50	μg/L	20.0	ND	100	60-140	3.05	30	
Toluene	18.9	0.50	"	20.0	ND	94.5	60-140	5.99	30	
Ethylbenzene	20.1	0.50	"	20.0	ND	100	60-140	6.15	30	
Xylenes (total)	63.6	1.0	"	60.0	ND	106	60-140	6.66	30	
Surrogate: o-Chlorotoluene (BTEX)	20.6		"	20.0		103	65-135			
Batch CP03845 - EPA 5030 Water G	C									
Blank (CP03845-BLK1)				Prepared:	05/22/06	Analyzed	: 05/24/06			
Gasoline	ND	50	μg/L							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	1.0	"							
Surrogate: o-Chlorotoluene (BTEX)	23.3		"	20.0		116	65-135			
Surrogate: o-Chlorotoluene (Gas)	17.8		"	20.0		89.0	65-135			
LCS (CP03845-BS1)				Prepared:	05/22/06	Analyzed	: 05/24/06			
Benzene	19.5	0.50	μg/L	20.0		97.5	70-140			
Toluene	18.5	0.50	"	20.0		92.5	70-140			
Ethylbenzene	19.7	0.50	"	20.0		98.5	70-140			
Xylenes (total)	62.4	1.0	"	60.0		104	70-140			
Surrogate: o-Chlorotoluene (BTEX)	20.4		"	20.0		102	65-135			
LCS Dup (CP03845-BSD1)				Prepared:	05/22/06	Analyzed	: 05/24/06			
Benzene	20.5	0.50	μg/L	20.0		102	70-140	5.00	30	
Toluene	18.9	0.50	"	20.0		94.5	70-140	2.14	30	
Ethylbenzene	20.1	0.50	"	20.0		100	70-140	2.01	30	
Xylenes (total)	63.5	1.0	"	60.0		106	70-140	1.75	30	
Surrogate: o-Chlorotoluene (BTEX)	20.5		"	20.0		102	65-135			

Page 16 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

Reporting

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Gas/BTEX by GC PID/FID - Quality Control

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CP03845 - EPA 5030 Water GC										
Matrix Spike (CP03845-MS1)	Sour	ce: CPE06	18-01	Prepared:	05/22/06	Analyzed	1: 05/24/06			
Gasoline	403	50	$\mu g \! / \! L$	500	ND	80.6	65-135			
Surrogate: o-Chlorotoluene (Gas)	19.1		"	20.0		95.5	65-135			
Matrix Spike Dup (CP03845-MSD1)	Sour	ce: CPE06	18-01	Prepared:	05/22/06	Analyzed	1: 05/24/06			
Gasoline	394	50	$\mu g \! / \! L$	500	ND	78.8	65-135	2.26	30	
Surrogate: o-Chlorotoluene (Gas)	19.6		"	20.0		98.0	65-135			

CA DOHS ELAP Accreditation/Registration Number 1233

%REC

RPD

Page 17 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP03873 - EPA 3010A										
Blank (CP03873-BLK1)				Prepared:	05/24/06	Analyzed	: 05/26/06			
Calcium	ND	1000	μg/L	r		,				
Magnesium	ND	1000	"							
Molybdenum	ND	20	"							
Potassium	ND	1000	"							
Sodium	ND	1000	"							
Vanadium	ND	10	"							
LCS (CP03873-BS1)				Prepared:	05/24/06	Analyzed	: 05/26/06			
Calcium	10700	1000	μg/L	10000		107	80-120			
Magnesium	10300	1000	"	10000		103	80-120			
Molybdenum	498	20	"	500		99.6	80-120			
Potassium	9980	1000	"	10000		99.8	80-120			
Sodium	10300	1000	"	10000		103	80-120			
Vanadium	531	10	"	500		106	80-120			
LCS Dup (CP03873-BSD1)				Prepared:	05/24/06	Analyzed	: 05/26/06			
Calcium	11000	1000	μg/L	10000		110	80-120	2.76	20	
Magnesium	10500	1000	"	10000		105	80-120	1.92	20	
Molybdenum	531	20	"	500		106	80-120	6.41	20	
Potassium	10200	1000	"	10000		102	80-120	2.18	20	
Sodium	10500	1000	"	10000		105	80-120	1.92	20	
Vanadium	549	10	"	500		110	80-120	3.33	20	
Matrix Spike (CP03873-MS1)	So	urce: CPE06	15-01	Prepared:	05/24/06	Analyzed	: 05/26/06			
Calcium	33600	1000	μg/L	10000	24000	96.0	75-125			
Magnesium	22400	1000	"	10000	13000	94.0	75-125			
Molybdenum	521	20	"	500	ND	104	75-125			
Potassium	10600	1000	"	10000	760	98.4	75-125			
Sodium	19100	1000	"	10000	9000	101	75-125			
Vanadium	529	10	"	500	7.0	104	75-125			

Page 18 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP03873 - EPA 3010A										
Matrix Spike Dup (CP03873-MSD1)	Sor	arce: CPE06	15-01	Prepared:	05/24/06	Analyzed	1: 05/26/06			
Calcium	34100	1000	μg/L	10000	24000	101	75-125	1.48	25	
Magnesium	22800	1000	"	10000	13000	98.0	75-125	1.77	25	
Molybdenum	530	20	"	500	ND	106	75-125	1.71	25	
Potassium	10800	1000	"	10000	760	100	75-125	1.87	25	
Sodium	19400	1000	"	10000	9000	104	75-125	1.56	25	
Vanadium	538	10	"	500	7.0	106	75-125	1.69	25	
Batch CP03885 - EPA 3020A										
Blank (CP03885-BLK1)				Prepared of	& Analyze	ed: 05/24/	06			
Selenium	ND	5.0	μg/L							
LCS (CP03885-BS1)				Prepared of	& Analyze	ed: 05/24/	06			
Selenium	95.1	5.0	$\mu g/L$	100		95.1	80-120			
LCS Dup (CP03885-BSD1)				Prepared of	& Analyze	ed: 05/24/	06			
Selenium	106	5.0	$\mu g/L$	100		106	80-120	10.8	20	
Matrix Spike (CP03885-MS1)	Sor	arce: CPE06	15-01	Prepared of	& Analyze	ed: 05/24/	06			
Selenium	92.8	5.0	μg/L	100	ND	92.8	75-125			
Matrix Spike Dup (CP03885-MSD1)	Sor	arce: CPE06	15-01	Prepared of	& Analyze	ed: 05/24/	06			
Selenium	99.4	5.0	μg/L	100	ND	99.4	75-125	6.87	25	

Page 19 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP03873 - EPA 3010A										
Blank (CP03873-BLK1)				Prepared:	05/24/06	Analyzed	1: 05/26/06			
Lead	ND	50	μg/L							
LCS (CP03873-BS1)				Prepared:	05/24/06	Analyzed	1: 05/26/06			
Lead	537	50	μg/L	500		107	80-120			
LCS Dup (CP03873-BSD1)				Prepared:	05/24/06	Analyzed	1: 05/26/06			
Lead	572	50	μg/L	500		114	80-120	6.31	20	
Matrix Spike (CP03873-MS1)	Sou	rce: CPE06	15-01	Prepared:	05/24/06	Analyzed	1: 05/26/06			
Lead	531	50	μg/L	500	ND	106	75-125			
Matrix Spike Dup (CP03873-MSD1)	Sou	rce: CPE06	15-01	Prepared:	05/24/06	Analyzed	1: 05/26/06			
Lead	539	50	μg/L	500	ND	108	75-125	1.50	25	

Page 20 of 20 05/30/06 15:03

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPE0615

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Notes and Definitions

QS-4 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

GAS-1 Although sample contains compounds in the retention time range associated with gasoline, the chromatogram was not consistent

with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.

D-DSL Although sample contains compounds in the retention time range associated with diesel, the chromatogram was not consistent

with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on diesel.

A-COM The laboratory method detection limit is 0.012 mg/L. However, bromide was not detected above the MDL.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

BSK ANALYTICAL LABORATORIES

Mark Smith California Laboratory Services 3249 Fitzgerald Road Rancho Cordova, CA 95742

BSK Submission #: 2006051458

BSK Sample ID #: 723150

Project ID: CPE0615 Project Desc: Unocal #0813, 122 Leslie St. Ukiah, CA

Submission Comments:

Sample Type: Liquid
Sample Description: MW-1
Sample Comments: CPE0615-01

Certificate of Analysis NELAP Certificate #04227CA ELAP Certificate #1180

Report Issue Date: 05/26/2006

 Date Sampled:
 05/17/2006

 Time Sampled:
 1604

 Date Received:
 05/19/2006

Inorganics							Prep	Analysis
Analyte	Method	Result	Units	PQL	Dilution	DLR	Date/Time	Date/Time
Bromate (BrO3)	EPA 300.1	ND	mg/L	0.005	1	0.005	05/20/06	05/20/06

mg/L: Milligrams/Liter (ppm) mg/Kg: Milligrams/Kilogram (ppm) µg/L: Micrograms/Liter (ppb) µg/Kg: Micrograms/Kilogram (ppb)

%Rec: Percent Recovered (surrogates)

Report Authentication Code:

PQL: Practical Quantitation Limit
DLR: Detection Limit for Reporting
: PQL x Dilution
ND: None Detected at DLR

H: Analyzed outside of hold time

P: Preliminary result

S: Suspect result. See Case Narrative for comments.

E: Analysis performed by External laboratory. See External Laboratory Report attachments.

BSK ANALYTICAL LABORATORIES

Mark Smith California Laboratory Services 3249 Fitzgerald Road Rancho Cordova, CA 95742

BSK Submission #: 2006051458

BSK Sample ID #: 723151

Project ID: CPE0615 Project Desc: Unocal #0813, 122 Leslie St. Ukiah, CA

Result

ND

Units

mg/L

PQL

0.005

Dilution

DLR

0.005

05/20/06

Method

EPA 300.1

Submission Comments:

Inorganics Analyte

Bromate (BrO3)

Sample Type: Liquid
Sample Description: MW-2
Sample Comments: CPE0615-02

Certificate of Analysis NELAP Certificate #04227CA ELAP Certificate #1180

Report Issue Date: 05/26/2006

Date Sampled: 05/17/2006

	Date Received:	05/19/2006
•		
Prep		alysis
Date/Time	e Date	/Time

05/20/06

Time Sampled: 1614

mg/L: Milligrams/Liter (ppm)
mg/Kg: Milligrams/Kilogram (ppm)
µg/L: Micrograms/Liter (ppb)
µg/Kg: Micrograms/Kilogram (ppb)

%Rec: Percent Recovered (surrogates)

Report Authentication Code:

PQL: Practical Quantitation Limit DLR: Detection Limit for Reporting : PQL x Dilution ND: None Detected at DLR

ND: None Detected at DLR pCi/L: Picocurie per Liter

* 723151-0.0000*

H: Analyzed outside of hold time

P: Preliminary result

S: Suspect result. See Case Narrative for comments.

Page 2 of 2

E: Analysis performed by External laboratory. See External Laboratory Report attachments.

3249 Fitzgerald Road Rancho Cordova, CA 95742

July 07, 2006

CLS Work Order #: CPF0938 COC #: No Number

Mike Berrington ENSR - Sacramento 10461 Old Placerville Rd., Suite 170 Sacramento, CA 95827-2508

Project Name: Frmr. Unocal #0813, 122 Leslie St.

Ukiah, Ca.

Enclosed are the results of analyses for samples received by the laboratory on 06/29/06 07:25. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 1 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Report results to: Name Company Mailing Address City, State, Zip Telephone No. Fax No.	ENSR 10461 Old Sacrament 916-362-71	ike Berrington NSR NSR N461 Old Placerville Road, Suite 170 acramento, CA 95827-2508 6-362-7100 6-362-8100 mberrington@ensr.aecom.com						Anal	lyses	s Re		Site EN: Und Glo	SR Nocal	dres No. No.	ss:	ation 122 Leslie St., Ukiah, CA 06940-264-130 813 T0604593441		
E-Mail Special instructions and/or	mberring	ton@ensr.a			15))21B)				Bromate (300) / Bromide (300.0)	Chromium VI (7199)	Molybdenum / Vanadium (200.7)		0				
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media	No. of Conts.	TPHg (8015)	BTEX (8021B)	TRPH (1664)	Total Lead (6010)	TPHd (8015)	Bromate	Chromiun	Molybder	Selenium (200.9)	pH (150.1)		Sample Condition/Comments	Preservative	
MW-1	6/28/00	1725	GW	7	X	Х	Х	X	X	X	X	X	X	X			HCI/HNO3	
MW-2	6/20/00	1820	GW	7	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ			HCI/HN03	
QA	1	-	Liquid	2	Х	Χ											Ice	
Collected by: Relinquished by: Relinquished by: Method of Shipment	JOR		Date/Time Date/Time Date/Time	7. 0	100	_	25	Red	ceive	ed b	y: y:	\	on F	Rept	t:	Date/Time Of Date/Time Of Date/Time Of Date/Time		0725
*																		

Page 2 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

CLS LABS SAMPLE RECEIVING EXCEPTION REPORTS
C.L.S Labs Job No.:CPF0938
Problem discovered by: SMITT+ Date
Nature of problem:
1 DID not SUPPLY CONTAINED FOR TRPH on
All samples.
(2) Supplied FIELD FILTERED / HMO3 Presences container
TB HAD BUBBLES + 100Se 11DS. Client contacted? Yes X No Spoke With: JDR
By whom:
(D) Does not veguire TRPH per Mike Fishen
(2) Dequires DISSOLUED METALS FOR MO, Se, U.
Resolution of problem: LOSSED ACCONDINGLY
H:\Alyssam\samplerecexception.doc

Page 3 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPF0938-01) GW	Sampled: 06/28/06 17:25	Received: 00	6/29/06 07	:25					
Bromide	ND	0.015	mg/L	1	CP04874	06/29/06	06/29/06	EPA 300.0	
Hexavalent Chromium	ND	1.0	$\mu g/L$	"	CP04865	06/29/06	06/29/06	EPA 7199	
pH	6.68		pH Units	"	CP04866	06/29/06	06/29/06	EPA 150.1	
MW-2 (CPF0938-03) GW	Sampled: 06/28/06 18:20	Received: 00	6/29/06 07	:25					
Bromide	ND	0.015	mg/L	1	CP04874	06/29/06	06/29/06	EPA 300.0	
Hexavalent Chromium	ND	1.0	$\mu g/L$	"	CP04865	06/29/06	06/29/06	EPA 7199	
pН	7.03		pH Units	"	CP04866	06/29/06	06/29/06	EPA 150.1	

Page 4 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPF0938-01) GW	Sampled: 06/28/06 17:25	Received: 06	/29/06 0	7:25					
Diesel	1.8	0.050	mg/L	1	CP04876	06/29/06	06/29/06	EPA 8015M	D-DSL
MW-2 (CPF0938-03) GW	Sampled: 06/28/06 18:20	Received: 06	/29/06 0	7:25					
Diesel	0.21	0.050	mg/L	1	CP04876	06/29/06	06/29/06	EPA 8015M	D-DSL

Page 5 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPF0938-01) GW	Sampled: 06/28/06 17:25	Received: 06	/29/06 07	':25					
Gasoline	580	50	μg/L	1	CP04945	06/30/06	07/06/06	8015M/8021B	GAS-1
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	3.2	0.50	"	"	"	"	"	"	
Xylenes (total)	3.7	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene	(Gas)	89.0 %	65-	135	"	"	"	"	
MW-2 (CPF0938-03) GW	Sampled: 06/28/06 18:20	Received: 06	/29/06 07	':25					
Gasoline	ND	50	μg/L	1	CP04945	06/30/06	07/06/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	0.51	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene	(Gas)	87.5 %	65-	135	"	"	"	"	
QA (CPF0938-05) Liquid	Sampled: 06/28/06 00:00	Received: 06/	29/06 07	:25					
Gasoline	ND	50	μg/L	1	CP04945	06/30/06	07/06/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	II .	
Surrogate: o-Chlorotoluene	(Gas)	85.5 %	65-	135	"	"	"	"	

Page 6 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Metals (Dissolved) by EPA 200 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (Field Filtered) (CPF0938-02) GW	Sampled: (06/28/06 17:2	25 Rece	ived: 06/29	0/06 07:25				
Molybdenum	ND	20	μg/L	1	CP04972	07/03/06	07/03/06	EPA 200.7	
Vanadium	ND	20	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	CP04974	07/03/06	07/05/06	EPA 200.8	
MW-2 (Field Filtered) (CPF0938-04) GW	Sampled: (06/28/06 18:2	20 Rece	ived: 06/29	0/06 07:25				
Molybdenum	ND	20	μg/L	1	CP04972	07/03/06	07/03/06	EPA 200.7	
Vanadium	ND	20	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	CP04974	07/03/06	07/05/06	EPA 200.8	

Page 7 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Metals by EPA 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPF0938-01) GW	Sampled: 06/28/06 17:25	Received: 06	/29/06 0	7:25					
Lead	ND	50	μg/L	1	CP04972	07/03/06	07/03/06	EPA 6010B	
MW-2 (CPF0938-03) GW	Sampled: 06/28/06 18:20	Received: 06	/29/06 0	7:25					
Lead	ND	50	ug/L	1	CP04972	07/03/06	07/03/06	EPA 6010B	

Page 8 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch CP04865 - General Prep												
Blank (CP04865-BLK1)				Prepared of	& Analyz	ed: 06/29/0	06					
Hexavalent Chromium	ND	1.0	μg/L									
LCS (CP04865-BS1)				Prepared & Analyzed: 06/29/06								
Hexavalent Chromium	4.25	1.0	μg/L	5.00		85.0	80-120					
LCS Dup (CP04865-BSD1)				Prepared of	& Analyz	ed: 06/29/0	06					
Hexavalent Chromium	5.15	1.0	μg/L	5.00		103	80-120	19.1	20			
Matrix Spike (CP04865-MS1)	Sour	ce: CPF09.	32-01	Prepared of	& Analyz	ed: 06/29/0	06					
Hexavalent Chromium	5.62	1.0	μg/L	5.00	ND	112	75-125					
Matrix Spike Dup (CP04865-MSD1)	Sour	ce: CPF09.	32-01	Prepared of	& Analyz	ed: 06/29/0	06					
Hexavalent Chromium	5.22	1.0	μg/L	5.00	ND	104	75-125	7.38	25			
Batch CP04874 - General Prep												
Blank (CP04874-BLK1)				Prepared of	& Analyz	ed: 06/29/0	06					
Bromide	ND	0.015	mg/L									
LCS (CP04874-BS1)				Prepared of	& Analyz	ed: 06/29/0	06					
Bromide	1.97	0.015	mg/L	2.00		98.5	80-120					
LCS Dup (CP04874-BSD1)				Prepared of	& Analyz	ed: 06/29/0	06					
Bromide	1.96	0.015	mg/L	2.00	-	98.0	80-120	0.509	20			
Matrix Spike (CP04874-MS1)	Sour	ce: CPF09.	30-01	Prepared of	& Analyz	ed: 06/29/0	06					

Page 9 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch CP04874 - General Prep

Matrix Spike Dup (CP04874-MSD1)	Source	e: CPF093	30-01	0-01 Prepared & Analyzed: 06/29/06						
Bromide	1.88	0.015	mg/L	2.00	0.17	85.5	75-125	0.00	25	

Page 10 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Extractable Petroleum Hydrocarbons by EPA Method 8015M - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CP04876 - EPA 3510B GCNV										
Blank (CP04876-BLK1)				Prepared	& Analyze	ed: 06/29/	06			
Diesel	ND	0.050	mg/L							
Motor Oil	ND	0.050	"							
LCS (CP04876-BS1)				Prepared	& Analyz	ed: 06/29/	06			
Diesel	2.68	0.050	mg/L	2.50		107	65-135			
LCS Dup (CP04876-BSD1)				Prepared	& Analyz	ed: 06/29/	06			
Diesel	2.73	0.050	mg/L	2.50		109	65-135	1.85	30	
Matrix Spike (CP04876-MS1)	Sor	urce: CPF08	15-01	Prepared	& Analyz	ed: 06/29/	06			
Diesel	2.58	0.050	mg/L	2.50	ND	103	46-137			
Matrix Spike Dup (CP04876-MSD1)	Sor	urce: CPF08	15-01	Prepared	& Analyz	ed: 06/29/	06			
Diesel	2.57	0.050	mg/L	2.50	ND	103	46-137	0.388	30	

Page 11 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Gas/BTEX by GC PID/FID - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CP04945 - EPA 5030 Water GC										
Blank (CP04945-BLK1)				Prepared:	06/30/06	Analyzed	1: 07/06/06			
Gasoline	ND	50	μg/L							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	1.0	"							
Surrogate: o-Chlorotoluene (BTEX)	23.3		"	20.0		116	65-135			
Surrogate: o-Chlorotoluene (Gas)	17.2		"	20.0		86.0	65-135			
LCS (CP04945-BS1)				Prepared:	06/30/06	Analyzed	1: 07/06/06			
Gasoline	485	50	$\mu g/L$	500		97.0	65-135			
Surrogate: o-Chlorotoluene (Gas)	18.9		"	20.0		94.5	65-135			
LCS Dup (CP04945-BSD1)				Prepared:	06/30/06	Analyzed	1: 07/06/06			
Gasoline	475	50	μg/L	500		95.0	65-135	2.08	30	
Surrogate: o-Chlorotoluene (Gas)	19.2		"	20.0		96.0	65-135			
Matrix Spike (CP04945-MS1)	So	urce: CPF093	38-03	Prepared:	06/30/06	Analyzed	1: 07/06/06			
Gasoline	483	50	μg/L	500	ND	96.6	65-135			
Surrogate: o-Chlorotoluene (Gas)	19.5		"	20.0		97.5	65-135			
Matrix Spike Dup (CP04945-MSD1)	So	urce: CPF093	38-03	Prepared:	06/30/06	Analyzed	1: 07/06/06			
Gasoline	472	50	μg/L	500	ND	94.4	65-135	2.30	30	
Surrogate: o-Chlorotoluene (Gas)	19.8		"	20.0		99.0	65-135			

Page 12 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	LIIIII	Ullits	Level	Result	70 KEC	Lillits	KFD	Lillit	Notes
Batch CP04972 - EPA 3010A										
Blank (CP04972-BLK1)				Prepared of	& Analyze	ed: 07/03/	06			
Molybdenum	ND	20	μg/L							
Vanadium	ND	20	"							
LCS (CP04972-BS1)				Prepared of	& Analyze	ed: 07/03/	06			
Molybdenum	487	20	$\mu g/L$	500		97.4	80-120			
Vanadium	508	20	"	500		102	80-120			
LCS Dup (CP04972-BSD1)				Prepared of	& Analyze	ed: 07/03/	06			
Molybdenum	471	20	μg/L	500		94.2	80-120	3.34	20	
Vanadium	489	20	"	500		97.8	80-120	3.81	20	
Batch CP04974 - EPA 3020A										
Blank (CP04974-BLK1)				Prepared:	07/03/06	Analyzed	1: 07/05/06			
Selenium	ND	5.0	μg/L							
LCS (CP04974-BS1)				Prepared:	07/03/06	Analyzed	1: 07/05/06			
Selenium	95.3	5.0	μg/L	100		95.3	80-120			
LCS Dup (CP04974-BSD1)				Prepared:	07/03/06	Analyzed	l: 07/05/06			
Selenium	89.5	5.0	$\mu g/L$	100		89.5	80-120	6.28	20	
Matrix Spike (CP04974-MS1)	So	urce: CPF09	37-01	Prepared:	07/03/06	Analyzed	1: 07/05/06			
Selenium	104	5.0	μg/L	100	1.4	103	75-125			
Matrix Spike Dup (CP04974-MSD1)	So	urce: CPF093	37-01	Prepared:	07/03/06	Analyzed	l: 07/05/06			
Selenium	105	5.0	μg/L	100	1.4	104	75-125	0.957	25	

Page 13 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP04972 - EPA 3010A										
Blank (CP04972-BLK1)				Prepared	& Analyze	ed: 07/03/0	06			
Lead	ND	50	μg/L							
LCS (CP04972-BS1)				Prepared	& Analyze	ed: 07/03/0	06			
Lead	535	50	μg/L	500		107	80-120			
LCS Dup (CP04972-BSD1)				Prepared	& Analyze	ed: 07/03/0	06			
Lead	521	50	μg/L	500		104	80-120	2.65	20	

CA DOHS ELAP Accreditation/Registration Number 1233

Page 14 of 14 07/07/06 13:52

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-130 CLS Work Order #: CPF0938

Sacramento, CA 95827-2508 Project Manager: Mike Berrington

Notes and Definitions

GAS-1 Although sample contains compounds in the retention time range associated with gasoline, the chromatogram was not consistent

with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.

D-DSL Although sample contains compounds in the retention time range associated with diesel, the chromatogram was not consistent

with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on diesel.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

BSK ANALYTICAL

Mark Smith California Laboratory Services 3249 Fitzgerald Road Rancho Cordova, CA 95742

BSK Submission #: 2006062231

BSK Sample ID #: 738077 Project ID: CPF0938

Submission Comments:

Sample Type: Liquid MW-1 Sample Description: Sample Comments: CPF0938-01 Project Desc: Frmr. Unocal #0813, 122 Leslie St. Ukiah, CA

Certificate of Analysis NELAP Certificate #04227CA ELAP Certificate #1180

Report Issue Date: 07/12/2006

Date Sampled: 06/28/2006

Date Received: 06/30/2006

1725

Time Sampled:

Inorganics							Prep	Analysis
Analyte	Method	Result	Units	PQL	Dilution	DLR	Date/Time	Date/Time
Bromate (BrO3)	EPA 300.1	ND	mg/L	0.005	1	0.005	07/11/06	07/11/06

mg/L: Milligrams/Liter (ppm) mg/Kg: Milligrams/Kilogram (ppm) μg/L: Micrograms/Liter (ppb) μg/Kg: Micrograms/Kilogram (ppb)

%Rec: Percent Recovered (surrogates)

PQL: Practical Quantitation Limit DLR: Detection Limit for Reporting : PQL x Dilution ND: None Detected at DLR

pCi/L: Picocurie per Liter

H: Analyzed outside of hold time

P: Preliminary result

S: Suspect result. See Case Narrative for comments.

E: Analysis performed by External laboratory. See External Laboratory Report attachments.

BSK ANALYTICAL LABORATORIES

Mark Smith California Laboratory Services 3249 Fitzgerald Road Rancho Cordova, CA 95742

BSK Submission #: 2006062231

BSK Sample ID #: 738078

Project ID: CPF0938 Project Desc: Frmr. Unocal #0813, 122 Leslie St. Ukiah, CA

Submission Comments:

Sample Type: Liquid
Sample Description: MW-2
Sample Comments: CPF0938-03

NELAP Certificate #04227CA ELAP Certificate #1180

Certificate of Analysis

Report Issue Date: 07/12/2006

 Date Sampled:
 06/28/2006

 Time Sampled:
 1820

 Date Received:
 06/30/2006

Inorganics							Dwan	Analysis
Analyte	Method	Result	Units	PQL	Dilution	DLR	Prep Date/Time	Date/Time
Bromate (BrO3)	EPA 300.1	ND	mg/L	0.005	1	0.005	07/11/06	07/11/06

mg/L: Milligrams/Liter (ppm) mg/Kg: Milligrams/Kilogram (ppm) µg/L: Micrograms/Liter (ppb) µg/Kg: Micrograms/Kilogram (ppb)

%Rec: Percent Recovered (surrogates)

Report Authentication Code:

PQL: Practical Quantitation Limit DLR: Detection Limit for Reporting : PQL x Dilution ND: None Detected at DLR

ND: None Detected at DLR

pCi/L: Picocurie per Liter
* 7 3 8 0 7 8 - 0 . 0 0 0 0 *

H: Analyzed outside of hold time

P: Preliminary result

S: Suspect result. See Case Narrative for comments.

Page 2 of 2

E: Analysis performed by External laboratory. See External Laboratory Report attachments.